References

  1. C.-T. Dinh, H. Yen, F. Kleitz, T.-O. Do, Three-dimensional ordered assembly of thin-shell Au/TiO2 hollow nanospheres for enhanced visible-light-driven photocatalysis, Angew. Chem. Int. Ed., 53 (2014) 6618–6623.
  2. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis mechanisms and materials, Chem. Rev., 114 (2014) 9919–9986.
  3. Z. Lu, P. Huo, Y. Luo, X. Liu, Y. Yan, Performance of molecularly imprinted photocatalysts based on fly-ash cenospheres for selective photodegradation of single and ternary antibiotics solution, J. Mol. Catal. A: Chem., 378 (2013) 91–98.
  4. A. Bansal, S. Madhavi, T.T.Y. Tan, Effect of silver on the photocatalytic degradation of humic acid, Catal. Today, 131 (2008) 250–254.
  5. J. Kim, J. Lee, W. Choi, Urgent high quality communications from across the chemical sciences, Chem. Commun., 5 (2008) 756.
  6. A. Shafaei, M. Nikazar, M. Arami, Photocatalytic degradation of terephthalic acid using titania and zinc oxide photocatalysts: comparative study, Desalination, 252 (2010) 8–16.
  7. X. Cheng, X. Yu, Z. Xing, Characterization and mechanism analysis of N doped TiO2 with visible light response and its enhanced visible activity, Appl. Surf. Sci., 258 (2012) 3244–3248.
  8. Z. Lu, F. Chen, M. He, M. Song, P. Xiao, Microwave synthesis of a novel magnetic imprinted TiO2 photocatalyst with excellent transparency for selective photodegradation of enrofloxacin hydrochloride residues solution, Chem. Eng. J., 249 (2014) 15–26.
  9. Z. Jiang, D. Liu, D. Jiang, W. Wei, K. Qian, M. Chen, Bamboo leaf-assisted formation of carbon/nitrogen co-doped anatase TiO2 modified with silver and graphitic carbon nitride novel and green synthesis and cooperative photocatalytic activity, J. Chem. Soc., Dalton Trans., 43 (2014) 13792–13802.
  10. R.R. Bhosale, S.R. Pujari, M.K. Lande, Photocatalytic activity and characterization of sol–gel-derived Ni-doped TiO2-coated active carbon composites, Appl. Surf. Sci., 261 (2012) 835–841.
  11. J. Lukac, M. Klementova, P. Bezdicka, S. Bakardjieva, J. Subrt, L. Szatmary, Influence of Zr as TiO2 doping ion on photocatalytic degradation of 4-chlorophenol, Appl. Catal., B, 74 (2007) 83–91.
  12. M. Asilturk, F. Sayilkan, E. Arpac, Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of Malachite Green dye under UV and vis irradiation, J. Photochem. Photobiol., A, 203 (2009) 64–71.
  13. S. Rehman, R. Ullah, A.M. Butt, N.D. Gohar, Strategies of making TiO2 and ZnO visible light active, J. Hazard. Mater., 170 (2009) 560–569.
  14. B. Abdollahi Nejand, S. Sanjabi, V. Ahmadi, Sputter deposition of high transparent TiO2–xNx/TiO2/ZnO layers on glass for development of photocatalytic self-cleaning application, Appl. Surf. Sci., 257 (2011) 10434–10442.
  15. K.K. Akurati, A. Vital, J.P. Dellemann, K. Michalow, T. Graule, D. Fetti, Flame made WO3/TiO2 nanoparticles relation between surface acidity, structure and photocatalytic activity, Appl. Catal., B, 79 (2008) 53–62.
  16. M. Pirhashemi, A. Habibi-Yangjeh, Ultrasonic-assisted preparation of plasmonic ZnO/Ag/Ag2WO4 nanocomposites with high visible-light photocatalytic performance for degradation of organic pollutants, J. Colloid Interface Sci., 491 (2017) 216–229.
  17. A. Akhundi, A. Habibi-Yangjeh, High performance magnetically recoverable g-C3N4/Fe3O4/Ag/Ag2SO3 plasmonic photocatalyst for enhanced photocatalytic degradation of water pollutants, Adv. Powder Technol., 28 (2017) 565–574.
  18. S. Naghizadeh-Alamdari, A. Habibi-Yangjeh, M. Pirhashemi, One-pot ultrasonic-assisted method for preparation of Ag/AgCl sensitized ZnO nanostructures as visible-light-driven photocatalysts, Solid State Sci., 40 (2015) 111–120.
  19. Z. Xuming, C. Yu Lim, L. Ru-Shi, T. Din Ping, Plasmonic photocatalysis, Rep. Prog. Phys., 76 (2013) 046401.
  20. S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy, Nat. Mater., 10 (2011) 911–921.
  21. J. Lee, S. Mubeen, X. Ji, G.D. Stucky, M. Moskovits, Plasmonic photoanodes for solar water splitting with visible light, Nano Lett., 12 (2012) 5014–5019.
  22. V.R. Djokić, A.D. Marinković, M. Mitrić, P.S. Uskoković, R.D. Petrović, V.R. Radmilović, D.T. Janaćković, Preparation of TiO2/carbon nanotubes photocatalysts the influence of the method of oxidation of the carbon nanotubes on the photocatalytic activity of the nanocomposites, Ceram. Int., 38 (2012) 6123–6129.
  23. R. Leary, A. Westwood, Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis, Carbon, 49 (2011) 741–772.
  24. S. DaDalt, A.K. Alves, C.P. Bergmann, Photocatalytic degradation of methyl orange dye in water solutions in the presence of MWCNT/TiO2 composites, Mater. Res. Bull., 48 (2013) 1845–1850.
  25. Z. Peining, A.S. Nair, Y. Shengyuan, S. Ramakrishna, TiO2–MWCNT rice grain-shaped nanocomposites: synthesis, characterization and photocatalysis, Mater. Res. Bull., 46 (2011) 588–595.
  26. C. Liu, H. Chen, K. Dai, A. Xue, H. Chen, Q. Huang, Synthesis, characterization, and its photocatalytic activity of doublewalled carbon nanotubes-TiO2 hybrid, Mater. Res. Bull., 48 (2013) 1499–1505.
  27. A. Habibi-Yangjeh, M. Shekofteh-Gohari, Novel magnetic Fe3O4/ZnO/NiWO4 nanocomposites: enhanced visible-light photocatalytic performance through p-n heterojunctions, Sep. Purif. Technol., 184 (2017) 334–346.
  28. M. Shekofteh-Gohari, A. Habibi-Yangjeh, Fe3O4/ZnO/CoWO4 nanocomposites: novel magnetically separable visible-lightdriven photocatalysts with enhanced activity in degradation of different dye pollutants, Ceram. Int., 43 (2017) 3063–3071.
  29. M. Mousavi, A. Habibi-Yangjeh, M. Abitorabi, Fabrication of novel magnetically separable nanocomposites using graphitic carbon nitride, silver phosphate and silver chloride and their applications in photocatalytic removal of different pollutants using visible-light irradiation, J. Colloid Interface Sci., 480 (2016) 218–231.
  30. M. Mousavi, A. Habibi-Yangjeh, Magnetically separable ternary g-C3N4/Fe3O4/BiOI nanocomposites: novel visible-light-driven photocatalysts based on graphitic carbon nitride, J. Colloid Interface Sci., 465 (2016) 83–92.
  31. M. Mousavi, A. Habibi-Yangjeh, Novel magnetically separable g-C3N4/Fe3O4/Ag3PO4/Co3O4 nanocomposites: visible-lightdriven photocatalysts with highly enhanced activity, Adv. Powder Technol., 28 (2017) 1540–1553.
  32. Z. Lu, X. Zhao, Z. Zhu, Y. Yan, W. Shi, H. Dong, Z. Ma, N. Gao, Y. Wang, H. Huang, Enhanced recyclability, stability and selectivity of CdS/C@Fe3O4 nanoreactors for orientation photodegradation of ciprofloxacin, Chem. Eur. J., 21 (2015) 18528–18533.
  33. U.G. Ahlborg, T.M. Thunberg, Chlorinated phenols: occurrence, toxicity, metabolism, and environmental impact, Crit. Rev. Toxicol., 7 (1980) 1–35.
  34. H.C. Lee, J.H. In, J.H. Kim, K.Y. Hwang, C.H. Lee, Kinetic analysis for decomposition of 2,4-dichlorophenol by supercritical water oxidation, Korean J. Chem. Eng., 22 (2005) 882–888.
  35. D.D. Dionysiou, A.P. Khodadoust, A.M. Kern, M.T. Suidan, I. Baudin, J.-M., Laîné, Continuous-mode photocatalytic degradation of chlorinated phenols and pesticides in water using a bench-scale TiO2 rotating disk reactor, Appl. Catal., B, 24 (2000) 139–155.
  36. K. Arnoldsson, P.L. Andersson, P. Haglund, Formation of environmentally relevant brominated dioxins from 2,4,6,-tribromophenol via bromoperoxidase-catalyzed dimerization, Environ. Sci. Technol., 46 (2012) 7239–7244.
  37. J. Bandara, J.A. Mielczarski, A. Lopez, J. Kiwi, Sensitized degradation of chlorophenols on iron oxides induced by visible light comparison with titanium oxide, Appl. Catal., B, 34 (2001) 321–333.
  38. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev., 108 (2008) 2064–2110.
  39. C.A. Huerta Aguilar, T. Pandiyan, J.A. Arenas-Alatorre, N. Singh, Oxidation of phenols by TiO2AFe3O4AM (M = Ag or Au) hybrid composites under visible light, Sep. Purif. Technol., 149 (2015) 265–278.
  40. B. Ahmmad, Y. Kusumoto, S. Somekawa, M. Ikeda, Carbon nanotubes synergistically enhance photocatalytic activity of TiO2, Catal. Commun., 9 (2008) 1410–1413.
  41. Z. Mo, C. Zhang, R. Guo, S. Meng, J. Zhang, Synthesis of Fe3O4 nanoparticles using controlled ammonia vapor diffusion under ultrasonic irradiation, Ind. Eng. Chem. Res., 50 (2011) 3534–3539.
  42. J. Lu, M. Wang, C. Deng, X. Zhang, Facile synthesis of Fe3O4@ mesoporous TiO2 microspheres for selective enrichment of phosphopeptides for phosphoproteomics analysis, Talanta, 105 (2013) 20–27.
  43. L. Yinghua, W. Huan, L. Li, C. Wenquan, Facile synthesis of Ag@AgCl plasmonic photocatalyst and its photocatalytic degradation under visible light, Rare Met. Mater. Eng., 44 (2015) 1088–1093.
  44. W. Wang, P. Serp, P. Kalck, Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol–gel method, J. Mol. Catal. A: Chem., 235 (2005) 194–199.
  45. M. Khan, W. Cao, Cationic (V, Y)-codoped TiO2 with enhanced visible light induced photocatalytic activity a combined experimental, theoretical study, J. Appl. Phys., 114 (2013) 183514.
  46. S. Kaviya, J. Santhanalakshmi, B. Viswanathan, J. Muthumar, K. Srinivasan, Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activity, Spectrochim. Acta, Part A, 79 (2011) 594–598.
  47. G. Sadanandam, K. Lalitha, V.D. Kumari, M.V. Shankar, M. Subrahmanyama, Cobalt doped TiO2: a stable and efficient photocatalyst for continuous hydrogen production from glycerol: water mixtures under solar light irradiation, Int. J. Hydrogen Energy, 38 (2013) 9655–9664.
  48. M. Hamadanian, A. Reisi-Vanani, A. Majedi, Sol-gel preparation and characterization of Co/TiO2 nanoparticles application to the degradation of methyl orange, J. Iran. Chem. Soc., 7 (2010) 52–58.
  49. Y. Koo, G. Littlejohn, B. Collins, Y. Yun, V.N. Shanov, M. Schulz, D. Pai, J. Sankar, Synthesis and characterization of Ag–TiO2-CNT nanoparticle composites with high photocatalytic activity under artificial light, Composites Part B, 57 (2014) 105–111.
  50. M.S. ArifSher Shah, K. Zhang, A.R. Park, K.S. Kim, N.-G. Park, J.H. Park, P.J. Yoo, Single-step solvothermal synthesis of mesoporous Ag–TiO2-reduced graphene oxide ternary composites with enhanced photocatalytic activity, Nanoscale, 5 (2013) 5093–5101.
  51. X. Zhou, G. Liu, J. Yu, W. Fan, Surface plasmon resonancemediated photocatalysis by noble metal-based composites under visible light, J. Mater. Chem., 22 (2012) 21337–21354.
  52. M.J. Sampaio, C.G. Silva, R.R.N. Marques, A.M.T. Silva, J.L. Faria, Carbon nanotube-TiO2 thin films for photocatalytic applications, Catal. Today, 161 (2011) 91–96.
  53. S. Kumar, S. Khanchandani, M. Thirumal, A.K. Ganguli, Achieving enhanced visible-light-driven photocatalysis using type-II NaNbO3/CdS core/shell heterostructures, ACS Appl. Mater. Interfaces, 6 (2014) 13221–13233.
  54. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 57 (1985) 603–619.
  55. Z. Teng, X. Su, G. Chen, C. Tian, H. Li, L. Ai, G. Lu, Superparamagnetic high-magnetization composite microspheres with Fe3O4@SiO2 core and highly crystallized mesoporous TiO2 shell, Colloids Surf., A, 402 (2012) 60–65.
  56. K. Kočí, K. Zatloukalová, L. Obalová, S. Krejčíková, Z. Lacný, L. Čapek, A. Hospodková, O. Šolcová, Wavelength effect on photocatalytic reduction of CO2 by Ag/TiO2 catalyst, Chin. J. Catal., 32 (2011) 812–815.
  57. X. Yang, T. Xiao, P.P. Edwards, The use of products from CO2 photoreduction for improvement of hydrogen evolution in water splitting, Int. J. Hydrogen Energy, 36 (2011) 6546–6552.
  58. K.H. Leong, B.L. Gan, S. Ibrahim, P. Saravanan, Synthesis of surface plasmon resonance (SPR) triggered Ag/TiO2 photocatalyst for degradation of endocrine disturbing compounds, Appl. Surf. Sci., 319 (2014) 128–135.
  59. T. Peng, P. Zeng, D. Ke, X. Liu, X. Zhang, Hydrothermal preparation of multi-walled carbon nanotubes (MWCNTs)/CdS nanocomposite and its efficient photocatalytic hydrogen production under visible light irradiation, Energy Fuels, 25 (2011) 2203–2210.
  60. S.J. Yeo, H. Kang, Y.H. Kim, S. Han, P.J. Yoo, Layer-by-layer assembly of polyelectrolyte multilayers in three-dimensional inverse opal structured templates, ACS Appl. Mater. Interfaces, 4 (2012) 2107–2115.
  61. Y. Wang, L. Liu, L. Xu, C. Meng, W. Zhu, Ag/TiO2 nanofiber heterostructures highly enhanced photocatalysts under visible light, J. Appl. Phys., 113 (2013) 174311.