References
- A. Demirbas, Agricultural based activated carbons for the
removal of dyes from aqueous solutions: a review, J. Hazard.
Mater., 167 (2009) 1–9.
- M. Ilayaraja, N.P. Krishnan, R. Sayee Kannan, Adsorption of
Rhodamine-B and Congo red dye from aqueous solution using
activated carbon: kinetics, isotherms, and thermodynamics,
IOSR J. Environ. Sci. Toxicol. Food Technol., 5 (2013) 79–89.
- M.P. Shah, K.A. Patel, S.S. Nair, A.M. Darji, S. Maharaul,
Microbial degradation of Azo dye by Pseudomonas spp. MPS-2
by an application of sequential microaerophilic & aerobic
process, Am. J. Microbiol. Res., 1 (2013) 105–112.
- S.S. Moghaddam, M.R.A. Moghaddam, M. Arami, Coagulation/flocculation process for dye removal using sludge from water
treatment plant: optimization through response surface
methodology, J. Hazard. Mater., 175 (2010) 651–657.
- B. Rodrıguez-Cabo, I. Rodrıguez-Palmeiro, R. Rodil, E. Rodil,
A. Arce, A. Soto, Synthesis of AgCl nanoparticles in ionic liquid
and their application in photodegradation of Orange II, J.
Mater. Sci., 50 (2015) 3576–3585.
- M. Abbasi, N.R. Asl, Sonochemical degradation of Basic Blue
41 dye assisted by nanoTiO2 and H2O2, J. Hazard. Mater., 153
(2008) 942–947.
- L. Fan, Y. Zhou, W. Yang, G. Chen, F. Yang, Electrochemical
degradation of aqueous solution of Amaranth azo dye on ACF
under potentiostatic model, Dyes Pigm., 76 (2008) 440–446.
- M. Benadjemia, L. Millière, L. Reinert, N. Benderdouche, L.
Duclaux, Preparation, characterization and Methylene Blue
adsorption of phosphoric acid activated carbons from globe
artichoke leaves, Fuel Process. Technol., 92 (2011) 1203–1212.
- M. Ghaedi, B. Sadeghian, A.A. Pebdani, R. Sahraei, A. Daneshfar,
C. Duran, Kinetics, thermodynamics and equilibrium evaluation
of direct yellow 12 removal by adsorption onto silver nanoparticles
loaded activated carbon, Chem. Eng. J., 187 (2012) 133–141.
- C. Djilani, R. Zaghdoudi, F. Djazi, B. Bouchekima, A. Lallam,
A. Modarressi, M. Rogalski, Adsorption of dyes on activated
carbon prepared from apricot stones and commercial activated
carbon, J. Taiwan Inst. Chem. Eng., 53 (2015) 112–121.
- M.A. Ahmad, N.A.A. Puad, O.S. Bello, Kinetic, equilibrium
and thermodynamic studies of synthetic dye removal using
pomegranate peel activated carbon prepared by microwaveinduced
KOH activation, Water Resour. Ind., 6 (2014) 18–35.
- J. Gao, Y. Qin, T. Zhou, D. Cao, P. Xu, D. Hochstetter, Y. Wang,
Adsorption of methylene blue onto activated carbon produced
from tea (Camellia sinensis L.) seed shells: kinetics, equilibrium,
and thermodynamics studies, J. Biomed. Biotechnol., 14 (2013)
650–658.
- P.K. Malik, Use of activated carbons prepared from sawdust
and rice-husk for adsorption of acid dyes: a case study of Acid
Yellow 36, Dyes Pigm., 56 (2003) 239–249.
- M.M. Hamed, M.M.S. Ali, M. Holiel, Preparation of activated
carbon from doum stone and its application on adsorption
of 60Co and 152+154Eu: equilibrium, kinetic and thermodynamic
studies, J. Environ. Radioact., 164 (2016) 113–124.
- I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Adsorption of basic dye
using activated carbon prepared from oil palm shell: batch and
fixed bed studies, Desalination, 225 (2008) 13–28.
- G.O. El-Sayed, M.M. Yehia, A.A. Asaad, Assessment of activated
carbon prepared from corncob by chemical activation with
phosphoric acid, Water Resour. Ind., 7–8 (2014) 66–75.
- N. Bouchelkia, L. Mouni, L. Belkhiri, A. Bouzaza, J. Bollinger,
K. Madani, F. Dahmoun, Removal of lead(II) from water using
activated carbon developed from jujube stones, a low-cost
sorbent, Sep. Sci. Technol., 51 (2016) 1645–1653.
- H.M. Chiang, T.C. Chen, S.D. Pan, H.L. Chiang, Adsorption
characteristics of Orange II and chrysophenine on sludge
adsorbent and activated carbon fibers, J. Hazard. Mater., 161
(2009) 1384–1390.
- N. Douara, B. Bestani, N. Benderdouche, L. Duclaux, Sawdustbased
activated carbon ability in the removal of phenol-based
organics from aqueous media, Desal. Wat. Treat., 57 (2016)
5529–5545.
- J. Jagiello, J.P. Olivier, A simple two-dimensional NLDFT model
of gas adsorption in finite carbon pores. Application to pore
structure analysis, J. Phys. Chem. C, 113 (2009) 19382–19385.
- J. Jagiello, M. Thommes, Comparison of DFT characterization
methods based on N2, Ar, CO2, and H2 adsorption applied to
carbons with various pore size distributions, Carbon, 42 (2004)
1227–1232.
- S. Attouti, B. Bestani, N. Benderdouche, D. Laurent, Application
of Ulva lactuca and Systoceira stricta algae-based activated
carbons to hazardous cationic dyes removal from industrial
effluents, Water Res., 47 (2013) 3375–3388.
- A. Belayachi, B. Bestani, A. Bendraoua, N. Benderdouche, L.
Duclaux, The influence of surface functionalization of activated
carbon on dyes and metal ion removal from aqueous media,
Desal. Wat. Treat., 57 (2016) 17557–17569.
- Y. Shinogi, Y. Kanri, Pyrolysis of plant, animal and human
waste: physical and chemical characterization of the pyrolytic
products, Bioresour. Technol., 90 (2003) 241–247.
- D. Angın, Effect of pyrolysis temperature and heating rate on
biochar obtained from pyrolysis of safflower seed press cake,
Bioresour. Technol., 128 (2013) 593–597.
- P. Chuenklang, S. Thungtong, T. Vitidsant, Effect of activation
by alkaline solution on properties of activated carbon from
rubber wood, J. Met. Mater. Miner., 12 (2002) 29–38.
- W.M.A.W. Daud, W.S.W. Ali, M.Z. Sulaiman, Effect of activation
temperature on pore development in activated carbon produced
from palm shell, J. Chem. Technol. Biotechnol., 78 (2002) 1–5.
- S.M. Yakout, G. Sharaf El-Deen, Characterization of activated
carbon prepared by phosphoric acid activation of olive stones,
Arabian J. Chem., 9 (2016) S1155–S1162.
- L.Y. Meng, S.J. Park, Investigation of narrow pore size
distribution on carbon dioxide capture of nanoporous carbons,
Bull. Korean Chem. Soc., 33 (2012) 3749–3754.
- M. Mohammadi, A.J. Hassani, A.R. Mohamed, G.D. Najafpour,
Removal of Rhodamine B from aqueous solution using palm
shell-based activated carbon: adsorption and kinetic studies, J.
Chem. Eng. Data, 55 (2010) 5777–5785.
- C. Xu, N. Hedin, Ultramicroporous CO2 adsorbents with
tunable mesopores based on polyimines synthesized under
off-stoichiometric conditions, Microporous Mesoporous Mater.,
222 (2016) 80–86.
- D. Graham, Characterization of physical adsorption systems
III. The separate effects of pore size and surface acidity upon
the adsorbent capacities of activated carbons, J. Phys. Chem., 59
(1955) 896–900.
- M.R.R. Kooh, M.K. Dahri, L.B.L. Lim, The removal of
Rhodamine B dye from aqueous solution using Casuarina
equisetifolia needles as adsorbent, Cogent Environ. Sci., 2 (2016)
1–14.
- N. Thinakaran, P. Baskaralingam, M. Pulikesi, P. Panneerselvam,
S. Sivanesan, Removal of acid violet 17 from aqueous solutions
by adsorption onto activated carbon prepared from sunflower
seed hull, J. Hazard. Mater., 151 (2008) 316–322.
- Z.M. Abou-Gamra, H.A.A. Medien, Kinetic, thermodynamic
and equilibrium studies of Rhodamine B adsorption by low
cost biosorbent sugar cane bagasse, Eur. Chem. Bull., 2 (2013)
417–422.
- F. Güzel, H. Sayğılı, G.A. Sayğılı, F. Koyuncu, Elimination of
anionic dye by using nanoporous carbon prepared from an
industrial biowaste, J. Mol. Liq., 194 (2014) 130–140.
- A.A. Said, A.A.M. Aly, M.M. Abd El-Wahab, S.A. Soliman, A.A.
Abd El-Hafez, V. Helmey, M.N. Goda, Potential application
of propionic acid modified sugarcane bagasse for removing
of basic and acid dyes from industrial wastewater, Resour.
Environ., 2 (2012) 93–99.
- I. Langmuir, The adsorption of gases on plane surfaces of glass,
mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
- M. Arami, N.Y. Limaee, N.M. Mahmoodia, Evaluation of the
adsorption kinetics and equilibrium for the potential removal
of acid dyes using a biosorbent, Chem. Eng. J., 139 (2008) 2–10.
- H. Freundlich, Of the adsorption of gases. Section II. Kinetics
and energetics of gas adsorption. Introductory paper to section
II, Trans. Faraday Soc., 28 (1932) 195–201.
- L. Ding, B. Zou, W. Gao, Q. Liu, Z. Wang, Y. Guo, X. Wang, Y.
Liu, Adsorption of Rhodamine-B from aqueous solution using
treated rice husk-based activated carbon, Colloids Surf., A, 446
(2014) 1–7.
- S. Ramuthai, V. Nandhakumar, M. Thiruchelvi, S. Arivoli, V.
Vijayakumaran, Rhodamine B adsorption-kinetic, mechanistic
and thermodynamic studies, J. Chem., 6 (2009) S363–S373.
- D.L. Postai, C.A. Demarchi, F. Zanatta, D.C.C. Melo, C.A.
Rodrigues, Adsorption of rhodamine B and methylene blue
dyes using waste of seeds of Aleurites Moluccana, a low cost
adsorbent, Alexandria Eng. J., 55 (2016) 1713–1723.
- L. Abramian, H. El-Rassy, Adsorption kinetics and
thermodynamics of azo-dye Orange II onto highly porous
titania aerogel, Chem. Eng. J., 150 (2009) 403–410.
- J. Ma, J. Zou, B. Cui, C. Yao, D. Li, Adsorption of Orange II dye
from aqueous solutions using phosphoric-acid modified clam
shell powder, Desal. Wat. Treat., 51 (2013) 6536–6544.
- X.G. Chen, S.S. Lv, Y. Ye, J.P. Cheng, S.H. Yin, Preparation and
characterization of rice husk/ferrite composites, Chin. Chem.
Lett., 21 (2010) 122–126.
- K.V. Kumar, Linear and non-linear regression analysis for the
sorption kinetics of methylene blue onto activated carbon, J.
Hazard. Mater., 137 (2006) 1538–1544.
- W.J. Weber Jr., J.C. Morris, Kinetics of adsorption on carbon
from solution, J. Sanit. Eng. Div. ASCE, 89 (1963) 31–59.
- B. Koumanova, P. Peeva-Antova, Z. Yaneva, Adsorption of
4-chlorophenol from aqueous solutions on activated carbon –
kinetic study, J. Univ. Chem. Technol. Metall., 40 (2005) 213–218.
- A.S. Ozcan, B. Erdem, A. Ozcan, Adsorption of Acid Blue 193
from aqueous solutions onto BTMA-bentonite, Colloids Surf.,
A, 266 (2005) 73–81.
- K. Liu, H. Li, Y. Wang, X. Gou, Y. Duan, Adsorption and
removal of Rhodamine B from aqueous solution by tannic acid
functionalized graphene, Colloids Surf., A, 477 (2015) 35–41.
- P. Panneerselvam, N. Morad, K.A. Tan, R. Mathiyarasi, Removal
of Rhodamine B dye using activated carbon prepared from
palm kernel shell and coated with iron oxide nanoparticles,
Sep. Sci. Technol., 47 (2012) 742–752.
- A. Ouldmoumna, L. Reinert, N. Benderdouche, B. Bestani,
L. Duclaux, Characterization and application of three novel
biosorbents Eucalyptus globulus, Cynara cardunculus, and Prunus
cerasefera to dye removal, Desal. Wat. Treat., 51 (2013) 3527–3538.
- Q. Li, Q.-Y. Yue, Y. Su, B.-Y. Gao, H.-J. Sun, Equilibrium,
thermodynamics and process design to minimize adsorbent
amount for the adsorption of acid dyes onto cationic polymerloaded
bentonite, Chem. Eng. J., 158 (2010) 489–497.