References

  1. H. Deng, L. Yao, Q.A. Huang, Q. Su, J. Zhang, G. Du, Highly improved electrochemical performance of Li-S batteries with heavily nitrogen-doped three-dimensional porous graphene interlayers, Mater. Res. Bull., 84 (2016) 218–224.
  2. D. Liu, C. Fu, N. Zhang, H. Zhou, Y. Kuang, Three-dimensional porous nitrogen doped graphene hydrogel for high energy density supercapacitors, Electrochim. Acta, 213 (2016) 291–297.
  3. H. Mianehrow, R. Afshari, S. Mazinani, F. Sharif, M. Abdouss, Introducing a highly dispersed reduced graphene oxide nano-biohybrid employing chitosan/hydroxyethyl cellulose for controlled drug delivery, Int. J. Pharm., 509 (2016) 400–407.
  4. X. Liu, J. Li, X. Wang, C. Chen, X. Wang, High performance of phosphate-functionalized graphene oxide for the selective adsorption of U(VI) from acidic solution, J. Nucl. Mater., 466 (2015) 56–64.
  5. L. Mahmoudian, A. Rashidi, H. Dehghani, R. Rahighi, Single-step scalable synthesis of three-dimensional highly porous graphene with favorable methane adsorption, Chem. Eng. J., 304 (2016) 784–792.
  6. X. Zou, Y. Yin, Y. Zhao, D. Chen, S. Dong, Synthesis of ferriferrous oxide/l-cysteine magnetic microspheres and their adsorption capacity for Pb (II) ions, Mater. Lett., 150 (2015) 59–61.
  7. Z. Wang, X. Zhang, X. Wu, J.-G. Yu, X.-Y. Jiang, Z.-L. Wu, X. Hao, Soluble starch functionalized graphene oxide as an efficient adsorbent for aqueous removal of Cd (II): The adsorption thermodynamic, kinetics and isotherms, J. Sol-Gel Sci. Technol., 82 (2017) 440–449.
  8. T. Gao, J. Yu, Y. Zhou, X. Jiang, The synthesis of graphene oxide functionalized with dithiocarbamate group and its prominent performance on adsorption of lead ions, J. Taiwan Inst. Chem. Eng., 71 (2017) 426–432.
  9. Y.C. Shi, A.J. Wang, X.L. Wu, J.R. Chen, J.J. Feng, Green-assembly of three-dimensional porous graphene hydrogels for efficient removal of organic dyes, J. Colloid. Interface. Sci., 484 (2016) 254–262.
  10. G. Li, J. Sun, W. Hou, S. Jiang, Y. Huang, J. Geng, Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium-sulfur batteries, Nat. Commun., 7 (2016) 10601.
  11. F. Zhang, Y. Tang, H. Liu, H. Ji, C. Jiang, J. Zhang, X. Zhang, C.-S. Lee, Uniform incorporation of flocculent molybdenum disulfide nanostructure into three-dimensional porous graphene as an anode for high-performance lithium ion batteries and hybrid supercapacitors, ACS Appl. Mater .Interfaces, 8 (2016) 4691–4699.
  12. L. Sun, L. Lu, Y. Bai, K. Sun, Three-dimensional porous reduced graphene oxide/sphere-like CoS hierarchical architecture composite as efficient counter electrodes for dye-sensitized solar cells, J. Alloys Comp., 654 (2016) 196–201.
  13. F. Coccia, L. Tonucci, D. Bosco, M. Bressan, N. d’Alessandro, One-pot synthesis of lignin-stabilised platinum and palladium nanoparticles and their catalytic behaviour in oxidation and reduction reactions, Green Chem., 14 (2012) 1073.
  14. J. Ralph, K. Lundquist, G. Brunow, F. Lu, H. Kim, P.F. Schatz, J.M. Marita, R.D. Hatfield, S.A. Ralph, J.H. Christensen, W. Boerjan, Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids, Phytochem. Rev., 3 (2004) 29–60.
  15. A. Naseem, S. Tabasum, K.M. Zia, M. Zuber, M. Ali, A. Noreen, Lignin-derivatives based polymers, blends and composites: A review, Int. J. Biol. Macromol., 93 (2016) 296–313.
  16. Y. Chang, S. Xing, X. Wei, Y. Wu, Z. Ma, Ligno sulfanate-assistant hydrothermal method for synthesis of titanate nanotubes with improved adsorption capacity for metal ions, Mater. Lett., 132 (2014) 353–356.
  17. W. Liu, R. Zhou, D. Zhou, G. Ding, J.M. Soah, C.Y. Yue, X. Lu, Lignin-assisted direct exfoliation of graphite to graphene in aqueous media and its application in polymer composites, Carbon, 83 (2015) 188–197.
  18. Y. Ge, L. Qin, Z. Li, Lignin microspheres: An effective and recyclable natural polymer-based adsorbent for lead ion removal, Mater. Design, 95 (2016) 141–147.
  19. F.J. Martín-Jimeno, F. Suárez-García, J.I. Paredes, A. Martínez-Alonso, J.M.D. Tascón, Activated carbon xerogels with a cellular morphology derived from hydrothermally carbonized glucose-graphene oxide hybrids and their performance towards CO2 and dye adsorption, Carbon, 81 (2015) 137–147.
  20. R. Zhang, Q. Qu, B. Han, B. Wang, A novel silica aerogel/ porous Y2SiO5 ceramics with low thermal conductivity and enhanced mechanical properties prepared by freeze casting and impregnation, Mater. Lett., 175 (2016) 219–222.
  21. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  22. S. Lagergren, Zur theorie der sogenannten adsorption geloster stoffe. Kungliga svenska vetenskapsakademiens, Handlingar, 24 (1898) 1–39.
  23. H. Freundlich, Over the adsorption in solution, J. Phys. Chem, 57 (1906) 470.
  24. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Amer. Chem. Soc., 40 (1918) 1361–1403.
  25. F. Zhou, J.G. Yu, X.Y. Jiang, 3D porous graphene synthesised using different hydrothermal treatment times for the removal of lead ions from an aqueous solution, Micro Nano Lett., 12 (2017) 308–311.
  26. Z. Li, B. Song, Z. Wu, Z. Lin, Y. Yao, K.-S. Moon, C.P. Wong, 3D porous graphene with ultrahigh surface area for microscale capacitive deionization, Nano Energy, 11 (2015) 711–718.
  27. Q. Li, J.G. Yu, F. Zhou, X.Y. Jiang, Synthesis and characterization of dithiocarbamate carbon nanotubes for the removal of heavy metal ions from aqueous solutions, Colloids Surfaces A: Physicochem. Eng. Asp., 482 (2015) 306–314.