References
- H. Deng, L. Yao, Q.A. Huang, Q. Su, J. Zhang, G. Du, Highly
improved electrochemical performance of Li-S batteries with
heavily nitrogen-doped three-dimensional porous graphene
interlayers, Mater. Res. Bull., 84 (2016) 218–224.
- D. Liu, C. Fu, N. Zhang, H. Zhou, Y. Kuang, Three-dimensional
porous nitrogen doped graphene hydrogel for high
energy density supercapacitors, Electrochim. Acta, 213 (2016)
291–297.
- H. Mianehrow, R. Afshari, S. Mazinani, F. Sharif, M. Abdouss,
Introducing a highly dispersed reduced graphene oxide
nano-biohybrid employing chitosan/hydroxyethyl cellulose
for controlled drug delivery, Int. J. Pharm., 509 (2016) 400–407.
- X. Liu, J. Li, X. Wang, C. Chen, X. Wang, High performance
of phosphate-functionalized graphene oxide for the selective
adsorption of U(VI) from acidic solution, J. Nucl. Mater., 466
(2015) 56–64.
- L. Mahmoudian, A. Rashidi, H. Dehghani, R. Rahighi, Single-step scalable synthesis of three-dimensional highly porous
graphene with favorable methane adsorption, Chem. Eng. J.,
304 (2016) 784–792.
- X. Zou, Y. Yin, Y. Zhao, D. Chen, S. Dong, Synthesis of ferriferrous
oxide/l-cysteine magnetic microspheres and their
adsorption capacity for Pb (II) ions, Mater. Lett., 150 (2015)
59–61.
- Z. Wang, X. Zhang, X. Wu, J.-G. Yu, X.-Y. Jiang, Z.-L. Wu, X.
Hao, Soluble starch functionalized graphene oxide as an efficient
adsorbent for aqueous removal of Cd (II): The adsorption
thermodynamic, kinetics and isotherms, J. Sol-Gel Sci. Technol.,
82 (2017) 440–449.
- T. Gao, J. Yu, Y. Zhou, X. Jiang, The synthesis of graphene oxide
functionalized with dithiocarbamate group and its prominent
performance on adsorption of lead ions, J. Taiwan Inst. Chem.
Eng., 71 (2017) 426–432.
- Y.C. Shi, A.J. Wang, X.L. Wu, J.R. Chen, J.J. Feng, Green-assembly
of three-dimensional porous graphene hydrogels for
efficient removal of organic dyes, J. Colloid. Interface. Sci., 484
(2016) 254–262.
- G. Li, J. Sun, W. Hou, S. Jiang, Y. Huang, J. Geng, Three-dimensional
porous carbon composites containing high sulfur
nanoparticle content for high-performance lithium-sulfur batteries,
Nat. Commun., 7 (2016) 10601.
- F. Zhang, Y. Tang, H. Liu, H. Ji, C. Jiang, J. Zhang, X. Zhang,
C.-S. Lee, Uniform incorporation of flocculent molybdenum
disulfide nanostructure into three-dimensional porous
graphene as an anode for high-performance lithium ion batteries
and hybrid supercapacitors, ACS Appl. Mater .Interfaces,
8 (2016) 4691–4699.
- L. Sun, L. Lu, Y. Bai, K. Sun, Three-dimensional porous
reduced graphene oxide/sphere-like CoS hierarchical architecture
composite as efficient counter electrodes for dye-sensitized
solar cells, J. Alloys Comp., 654 (2016) 196–201.
- F. Coccia, L. Tonucci, D. Bosco, M. Bressan, N. d’Alessandro,
One-pot synthesis of lignin-stabilised platinum and palladium
nanoparticles and their catalytic behaviour in oxidation
and reduction reactions, Green Chem., 14 (2012) 1073.
- J. Ralph, K. Lundquist, G. Brunow, F. Lu, H. Kim, P.F. Schatz,
J.M. Marita, R.D. Hatfield, S.A. Ralph, J.H. Christensen, W.
Boerjan, Lignins: Natural polymers from oxidative coupling of
4-hydroxyphenyl-propanoids, Phytochem. Rev., 3 (2004) 29–60.
- A. Naseem, S. Tabasum, K.M. Zia, M. Zuber, M. Ali, A. Noreen,
Lignin-derivatives based polymers, blends and composites: A
review, Int. J. Biol. Macromol., 93 (2016) 296–313.
- Y. Chang, S. Xing, X. Wei, Y. Wu, Z. Ma, Ligno sulfanate-assistant
hydrothermal method for synthesis of titanate nanotubes
with improved adsorption capacity for metal ions, Mater. Lett.,
132 (2014) 353–356.
- W. Liu, R. Zhou, D. Zhou, G. Ding, J.M. Soah, C.Y. Yue, X. Lu,
Lignin-assisted direct exfoliation of graphite to graphene in
aqueous media and its application in polymer composites,
Carbon, 83 (2015) 188–197.
- Y. Ge, L. Qin, Z. Li, Lignin microspheres: An effective and recyclable
natural polymer-based adsorbent for lead ion removal,
Mater. Design, 95 (2016) 141–147.
- F.J. Martín-Jimeno, F. Suárez-García, J.I. Paredes, A.
Martínez-Alonso, J.M.D. Tascón, Activated carbon xerogels
with a cellular morphology derived from hydrothermally
carbonized glucose-graphene oxide hybrids and their performance
towards CO2 and dye adsorption, Carbon, 81
(2015) 137–147.
- R. Zhang, Q. Qu, B. Han, B. Wang, A novel silica aerogel/
porous Y2SiO5 ceramics with low thermal conductivity and
enhanced mechanical properties prepared by freeze casting
and impregnation, Mater. Lett., 175 (2016) 219–222.
- Y.S. Ho, G. McKay, Pseudo-second order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- S. Lagergren, Zur theorie der sogenannten adsorption geloster
stoffe. Kungliga svenska vetenskapsakademiens, Handlingar,
24 (1898) 1–39.
- H. Freundlich, Over the adsorption in solution, J. Phys. Chem,
57 (1906) 470.
- I. Langmuir, The adsorption of gases on plane surfaces of glass,
mica and platinum, J. Amer. Chem. Soc., 40 (1918) 1361–1403.
- F. Zhou, J.G. Yu, X.Y. Jiang, 3D porous graphene synthesised
using different hydrothermal treatment times for the removal
of lead ions from an aqueous solution, Micro Nano Lett., 12
(2017) 308–311.
- Z. Li, B. Song, Z. Wu, Z. Lin, Y. Yao, K.-S. Moon, C.P. Wong,
3D porous graphene with ultrahigh surface area for microscale
capacitive deionization, Nano Energy, 11 (2015) 711–718.
- Q. Li, J.G. Yu, F. Zhou, X.Y. Jiang, Synthesis and characterization
of dithiocarbamate carbon nanotubes for the removal of
heavy metal ions from aqueous solutions, Colloids Surfaces A:
Physicochem. Eng. Asp., 482 (2015) 306–314.