References
- Y. Nakano, K. Takeshita, T. Tsutsumi, Adsorption mechanism
of hexavalent chromium by redox within condensed-tannin
gel, Water Res., 35 (2001) 496–500.
- D. Krishna, R. Sree, Artificial neural network (ANN) approach
for modeling chromium (VI) adsorption from aqueous solution
using a Borassus flabellifer coir powder, Int. J. Appl. Sci.
Eng., 12 (2014) 177–192.
- P.C. Mane, A.B. Bhosle, P.D. Deshmukh, C.M. Jangam, Chromium
adsorption onto activated carbon derived from Tendu
(Diospyros molanoxylon) leaf refuse; Influence of metal/carbon
ratio, time and pH, Adv. App. Sci. Res., 1 (2010) 212–221.
- C. Sutherland, C. Venkobachar, Equilibrium modeling of Cu
(II) biosorption onto untreated and treated forest macro-fungus
Fomes fasciatus, Int. J. Pl. An. Env. Sci., 3 (2013) 193–203.
- M.R. Gandhi, N. Viswanathan, S. Meenakshi, Adsorption
mechanism of hexavalent chromium removal using amberlite
IRA 743 resin, Ion Exch. Lett., 3 (2010) 25–35.
- T.C. Wang, J.C. Weissman, G. Ramesh, R. Varadarajan, J.R. Benemann,
Parameters for removal of toxic heavy metals by water
milfoil (Myriophyllum spicatum), Bull. Environ. Contam. Toxicol.,
57 (1996) 779–786.
- D.W. Hendricks, Water Treatment Unit Processes: Physical and
Chemical, CRC Press, 2006.
- B.H. Hameed, D.K. Mahmoud, A.L. Ahmad, Equilibrium modeling
and kinetic studies on the adsorption of basic dye by a
low-cost adsorbent: Coconut (Cocos nucifera) bunch waste, J.
Hazard. Mater., 158 (2008) 65–72.
- G. Naja, V. Diniz, B. Volesky, Predicting metal biosorption
performance, In: Proceedings of the 16th International Biohydrometallurgy
Symposium, STL Harrison, DE Rawlings, J.
Peterson, Eds., Compress Co., Cape Town, South Africa, 2005,
pp. 553–562.
- S. Saraf, V.K. Vaidya, Statistical optimization of biosorption
of reactive orange 13 by dead biomass of Rhizopus arrhizus NCIM 997 using response surface methodology, Int. J. Ind.
Chem., 6 (2015) 93–104.
- P. Kumar, P. Sharma, Artificial neural networks - A study, Int.
J. Emerg. Eng. Res. Technol., 2 (2014) 143–148.
- W.S. McCulloch, W.A. Pitts, Logical calculus of the ideas immanent
in nervous activity, Bull. Math. Biol., 52 (1990) 99–115.
- P.J. Werbos, Backpropagation through time: what it does and
how to do it,: Proc. IEEE, 1990, pp. 1550–1560.
- T.H. Kim, Pattern recognition using artificial neural network: a
review, In: Information Security and Assurance, Springer Berlin
Heidelberg, 2010, pp. 138–148.
- A. Gamal El-Din, D.W. Smith, Modeling a full-scale primary
sedimentation tank using artificial neural networks, Environ.
Technol., 23 (2002) 479–496.
- G. Stuart, R.A.F Machado, A.M.C. Uller, E.L. Lima, J.V. Oliveira,
Hybrid artificial neural network applied to modeling SCFE of
basil and rosemary oils, Food Sci. Technol., 17 (1997) 501–505.
- D.C. Psichogios, L.H. Ungar, A hybrid neural network-first
principles approach to process modeling, AIChE J., 38 (1992)
1499–1511.
- M.A. Hussain, M.S. Rahman, C.W. Ng, Prediction of pores formation
(porosity) in foods during drying: generic models by the
use of hybrid neural network, J. Food Eng., 51 (2002) 239–248.
- M.A. Kramer, M.L. Thompson, P.M. Bhagat, Embedding theoretical
models in neural networks, In: American Control Conference,
IEEE, 1992, pp. 475–479.
- K. Anupam, S. Dutta, C. Bhattacharjee, S. Datta, Artificial neural
network modelling for removal of chromium (VI) from
wastewater using physisorption onto powdered activated carbon,
Desal. Water Treat., 57 (2016) 3632–3641.
- G. Halder, S. Dhawane, P.K. Barai, A. Das, Optimizing chromium
(VI) adsorption onto superheated steam activated
granular carbon through response surface methodology and
artificial neural network, Environ. Prog. Sustain. Energy, 34
(2015) 638–647.
- M. Gholipour, H. Hashemipour, M. Mollashahi, Hexavalent
chromium removal from aqueous solution via adsorption on
granular activated carbon: adsorption, desorption, modeling
and simulation studies, J. Eng. Appl. Sci., 6 (2011) 10–18.
- T. Khan, M.H. Isa, M.R.U. Mustafa, H. Yeek-Chia, L. Baloo,
T.S.B.A. Manan, M.O. Saeed, Cr (VI) adsorption from aqueous
solution by an agricultural waste based carbon, RSC Advances,
6 (2016) 56365–56374.
- D.S. Lee, C.O. Jeon, J.M. Park, K.S. Chang, Hybrid neural network
modeling of a full-scale industrial wastewater treatment
process, Biotechnol. Bioeng., 78 (2002) 670–682.
- C. Faur-Brasquet, P.L. Cloirec, Neural network modeling of
organics removal by activated carbon cloths, J. Environ. Eng.,
127 (2001) 889–894.
- H. Pfost, V. Headley, Methods of determining and expressing
particle size, Feed Manuf. Technol., (1976) 512–517.
- U.S. Environmental Protection Agency (USEPA). Fate, transport,
and transformation test guidelines. Adsorption/desorption
(batch equilibrium), Washington, DC, OPPTS 835.1230,
2008.
- W.J. Weber, C.T. Miller, Modeling the sorption of hydrophobic
contaminants by aquifer materials—I. Rates and equilibria,
Water Res., 22 (1988) 457–464.
- Y.S. Ho, G. McKay, A comparison of chemisorption kinetic
models applied to pollutant removal on various sorbents, Process
Saf. Environ., 76 (1998) 332–340.
- Y.S. Ho, G. McKay, Sorption of dye from aqueous solution by
peat, Chem. Eng. J., 70 (1998) 115–124.
- Y.S. Ho, G. McKay, Pseudo-second order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from
solution, J. Sanit. Eng. Div., 89 (1963) 31–60.
- A.E. Ofomaja, Intraparticle diffusion process for lead (II) biosorption
onto mansonia wood sawdust, Bioresour. Technol.,
101 (2010) 5868–5876.
- R. Teixeira, V.O. Sousa Neto, J.T. Oliveira, C. Thalles, D.Q. Melo,
M.A. Silva, R.F. Nascimento, Study on the use of roasted barley
powder for the adsorption of Cu2+ ions in batch experiments
and in fixed-bed columns, Bioresources, 8 (2013) 3556–3573.
- I. Tsibranska, E. Hristova, Comparison of different kinetic
models for adsorption of heavy metals onto activated carbon
from apricot stones, Bulg. Chem. Commun., 43 (2011) 370–377.
- C. Sutherland, C. Venkobachar, A diffusion-chemisorption
kinetic model for simulating biosorption using forest macro-fungus, Fomes fasciatus, Int. Res. J. Pl. Sci., 1 (2010) 107–117.
- K. Mohd-Yusof, Development, analysis and comparison of
connectionist models for real-time optimization, PhD Thesis,
University of Waterloo, Ontario Canada, 2001.
- Z. Shahryari, A. Sharifi, A. Mohebbi, Artificial neural network
(ANN) approach for modeling and formulation of phenol
adsorption onto activated carbon, J. Eng. Thermophys., 22
(2013) 322–336.
- S. Kuvendziev, M. Marinkovski, K. Lisichkov, P. Paunović,
Artificial neural network modeling of Cd (II) ions adsorption
on nano-porous inorganic sorbents, In: Nanoscience Advances
in CBRN Agents Detection, Information and Energy Security,
Springer Netherlands, 2015, pp. 469–476.
- S. Lek, J.F. Guegan, Artificial neural networks as a tool in ecological
modeling, an introduction, Ecol. Modell., 120 (1999) 65–73.
- M. Van Der Bean, C. Jutten, Neural networks in geophysical
applications, Geophysics, 65 (2000) 1032–1047.
- Y. Babazadeh, S.M. Mousavi, M.R. Akbarzadeh, Multidimensional
dynamic modeling of milk ultrafiltration using
neuro-fuzzy method and a hybrid physical model, Iranian J.
Chem. Eng., 5 (2008) 3–22.
- B. Duarte, P.M. Saraiva, C.C. Pantelides, Combined mechanistic
and empirical modelling, Int. J. Chem. React. Eng., 2 (2004)
1–19.
- M.L. Thompson, M.A. Kramer, Modeling chemical processes
using prior knowledge and neural networks, AIChE J., 40
(1994) 1328–1340.
- C.A. Nascimento, R. Giudici, N. Scherbakoff, Modeling of
industrial nylon-6, 6 polymerization process in a twin-screw
extruder reactor. II. Neural networks and hybrid models, J.
Appl. Polym. Sci., 72 (1999) 905–912.
- H.T. Su, N. Bhat, P.A. Minderman, T.J. McAvoy, Integrating
neural networks with first principles models for dynamic
modeling, IFAC Proceedings, 25 (1992) 327–332.
- T. Chai, R.R. Draxler, Root mean square error (RMSE) or mean
absolute error (MAE)? - Arguments against avoiding RMSE in
the literature, Geosci. Model Dev., 7 (2014) 1247–1250.
- P. Chingombe, B. Saha, R.J. Wakeman, Surface modification
and characterisation of a coal-based activated carbon, Carbon,
43 (2005) 3132–3143.
- E. Romera, F. Gonzalez, A. Ballester, M.L. Blazquez, J.A.
Munoz, Biosorption with algae: A statistical review, Crit. Rev.
Biotechnol., 26 (2006) 223–235.
- V.K. Singh, P.N. Tiwari, Removal and recovery of chromium
(VI) from industrial waste water, J. Chem. Technol. Biotechnol.,
69 (1997) 376–382.
- A. Anandan, T. Janakiram, Adsorption of Cr(VI) from aqueous
solutions by low cost activated carbon, J. Chem. Pharm. Res., 4
(2012) 2900–2905.
- Y.J.P. Poots, G. McKay, J. Healy, The removal of acid dye from
effluent using natural adsorbents - I Peat, Water Res., 10 (1976)
1061–1066.
- K.K. Choy, D.C. Ko, C.W. Cheung, J.F. Porter, G. McKay, Film
and intraparticle mass transfer during the adsorption of metal
ions onto bone char, J. Colloid Interface Sci., 271 (2004) 284–295.
- M.A.O. Badmus, T.O.K Audu, B.U. Anyata, Removal of lead
ion from industrial wastewaters by activated carbon prepared
from periwinkle shells (Typanotonus fuscatus), Turkish J. Eng.
Env. Sci., 31 (2007) 251–263.
- J. Gao, Q. Zhang, K. Su, R. Chen, Y. Peng, Biosorption of acid
yellow 17 from aqueous solution by non-living aerobic granular
sludge, J. Hazard. Mater., 174 (2010) 215–225.
- S.S. Gupta, K.G. Bhattacharyya, Kinetics of adsorption of metal
ions on inorganic materials: a review, Adv. Colloid Interfac.,
162 (2011) 39–58.
- B.S. Chittoo, C. Sutherland, Phosphate removal and recovery
using lime-iron sludge: adsorption, desorption, fractal analysis,
modeling and optimization using artificial neural network-
genetic algorithm, Desal. Water Treat., 63 (2017) 227–240.
- Z. Aksu, E. Kabasakal, Batch adsorption of 2, 4-dichlorophenoxy-
acetic acid (2, 4-D) from aqueous solution by granular
activated carbon, Sep. Purif. Technol., 35 (2004) 223–240.
- P. Shanthi, G. Tamilarasan, K. Anitha, S. Karthikeyan, Film
and pore diffusion modeling for adsorption of reactive red-4
onto sterculia quadrifida seed shell waste as activated carbon,
Rasayan J. Chem., 7 (2014) 229–240.
- G.M. Walker, L.R. Weatherley, Kinetics of acid dye adsorption
on GAC, Water Res., 33 (1999) 1895–1899.
- K. Yetilmezsoy, Modeling studies for the determination of
completely mixed activated sludge reactor volume: Steadystate,
empirical and ANN applications, Neural Netw. World,
20 (2010) 559–589.
- C.W. Dawson, C. Harpham, R.L. Wilby, Y. Chen, Evaluation of
artificial neural network techniques for flow forecasting in the
River Yangtze, China, Hydrol. Earth Syst. Sci. Discuss., 6 (2002)
619–626.
- D. Giavarina, Understanding bland altman analysis, Biochemia.
Medica., 25 (2015) 141–151.
- C. Bunce, Correlation, agreement, and Bland–Altman analysis:
statistical analysis of method comparison studies, Am. J. Ophthalmol.,
148 (2009) 4–6.
- K. Yetilmezsoy, S. Demirel, Artificial neural network (ANN)
approach for modelling of Pb(II) adsorption from aqueous
solution by Antep pistachio (Pistacia Vera L.) shells, J. Hazard.
Mater., 153 (2008) 1288–1300.