References

  1. Y. Nakano, K. Takeshita, T. Tsutsumi, Adsorption mechanism of hexavalent chromium by redox within condensed-tannin gel, Water Res., 35 (2001) 496–500.
  2. D. Krishna, R. Sree, Artificial neural network (ANN) approach for modeling chromium (VI) adsorption from aqueous solution using a Borassus flabellifer coir powder, Int. J. Appl. Sci. Eng., 12 (2014) 177–192.
  3. P.C. Mane, A.B. Bhosle, P.D. Deshmukh, C.M. Jangam, Chromium adsorption onto activated carbon derived from Tendu (Diospyros molanoxylon) leaf refuse; Influence of metal/carbon ratio, time and pH, Adv. App. Sci. Res., 1 (2010) 212–221.
  4. C. Sutherland, C. Venkobachar, Equilibrium modeling of Cu (II) biosorption onto untreated and treated forest macro-fungus Fomes fasciatus, Int. J. Pl. An. Env. Sci., 3 (2013) 193–203.
  5. M.R. Gandhi, N. Viswanathan, S. Meenakshi, Adsorption mechanism of hexavalent chromium removal using amberlite IRA 743 resin, Ion Exch. Lett., 3 (2010) 25–35.
  6. T.C. Wang, J.C. Weissman, G. Ramesh, R. Varadarajan, J.R. Benemann, Parameters for removal of toxic heavy metals by water milfoil (Myriophyllum spicatum), Bull. Environ. Contam. Toxicol., 57 (1996) 779–786.
  7. D.W. Hendricks, Water Treatment Unit Processes: Physical and Chemical, CRC Press, 2006.
  8. B.H. Hameed, D.K. Mahmoud, A.L. Ahmad, Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: Coconut (Cocos nucifera) bunch waste, J. Hazard. Mater., 158 (2008) 65–72.
  9. G. Naja, V. Diniz, B. Volesky, Predicting metal biosorption performance, In: Proceedings of the 16th International Biohydrometallurgy Symposium, STL Harrison, DE Rawlings, J. Peterson, Eds., Compress Co., Cape Town, South Africa, 2005, pp. 553–562.
  10. S. Saraf, V.K. Vaidya, Statistical optimization of biosorption of reactive orange 13 by dead biomass of Rhizopus arrhizus NCIM 997 using response surface methodology, Int. J. Ind. Chem., 6 (2015) 93–104.
  11. P. Kumar, P. Sharma, Artificial neural networks - A study, Int. J. Emerg. Eng. Res. Technol., 2 (2014) 143–148.
  12. W.S. McCulloch, W.A. Pitts, Logical calculus of the ideas immanent in nervous activity, Bull. Math. Biol., 52 (1990) 99–115.
  13. P.J. Werbos, Backpropagation through time: what it does and how to do it,: Proc. IEEE, 1990, pp. 1550–1560.
  14. T.H. Kim, Pattern recognition using artificial neural network: a review, In: Information Security and Assurance, Springer Berlin Heidelberg, 2010, pp. 138–148.
  15. A. Gamal El-Din, D.W. Smith, Modeling a full-scale primary sedimentation tank using artificial neural networks, Environ. Technol., 23 (2002) 479–496.
  16. G. Stuart, R.A.F Machado, A.M.C. Uller, E.L. Lima, J.V. Oliveira, Hybrid artificial neural network applied to modeling SCFE of basil and rosemary oils, Food Sci. Technol., 17 (1997) 501–505.
  17. D.C. Psichogios, L.H. Ungar, A hybrid neural network-first principles approach to process modeling, AIChE J., 38 (1992) 1499–1511.
  18. M.A. Hussain, M.S. Rahman, C.W. Ng, Prediction of pores formation (porosity) in foods during drying: generic models by the use of hybrid neural network, J. Food Eng., 51 (2002) 239–248.
  19. M.A. Kramer, M.L. Thompson, P.M. Bhagat, Embedding theoretical models in neural networks, In: American Control Conference, IEEE, 1992, pp. 475–479.
  20. K. Anupam, S. Dutta, C. Bhattacharjee, S. Datta, Artificial neural network modelling for removal of chromium (VI) from wastewater using physisorption onto powdered activated carbon, Desal. Water Treat., 57 (2016) 3632–3641.
  21. G. Halder, S. Dhawane, P.K. Barai, A. Das, Optimizing chromium (VI) adsorption onto superheated steam activated granular carbon through response surface methodology and artificial neural network, Environ. Prog. Sustain. Energy, 34 (2015) 638–647.
  22. M. Gholipour, H. Hashemipour, M. Mollashahi, Hexavalent chromium removal from aqueous solution via adsorption on granular activated carbon: adsorption, desorption, modeling and simulation studies, J. Eng. Appl. Sci., 6 (2011) 10–18.
  23. T. Khan, M.H. Isa, M.R.U. Mustafa, H. Yeek-Chia, L. Baloo, T.S.B.A. Manan, M.O. Saeed, Cr (VI) adsorption from aqueous solution by an agricultural waste based carbon, RSC Advances, 6 (2016) 56365–56374.
  24. D.S. Lee, C.O. Jeon, J.M. Park, K.S. Chang, Hybrid neural network modeling of a full-scale industrial wastewater treatment process, Biotechnol. Bioeng., 78 (2002) 670–682.
  25. C. Faur-Brasquet, P.L. Cloirec, Neural network modeling of organics removal by activated carbon cloths, J. Environ. Eng., 127 (2001) 889–894.
  26. H. Pfost, V. Headley, Methods of determining and expressing particle size, Feed Manuf. Technol., (1976) 512–517.
  27. U.S. Environmental Protection Agency (USEPA). Fate, transport, and transformation test guidelines. Adsorption/desorption (batch equilibrium), Washington, DC, OPPTS 835.1230, 2008.
  28. W.J. Weber, C.T. Miller, Modeling the sorption of hydrophobic contaminants by aquifer materials—I. Rates and equilibria, Water Res., 22 (1988) 457–464.
  29. Y.S. Ho, G. McKay, A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents, Process Saf. Environ., 76 (1998) 332–340.
  30. Y.S. Ho, G. McKay, Sorption of dye from aqueous solution by peat, Chem. Eng. J., 70 (1998) 115–124.
  31. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  32. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div., 89 (1963) 31–60.
  33. A.E. Ofomaja, Intraparticle diffusion process for lead (II) biosorption onto mansonia wood sawdust, Bioresour. Technol., 101 (2010) 5868–5876.
  34. R. Teixeira, V.O. Sousa Neto, J.T. Oliveira, C. Thalles, D.Q. Melo, M.A. Silva, R.F. Nascimento, Study on the use of roasted barley powder for the adsorption of Cu2+ ions in batch experiments and in fixed-bed columns, Bioresources, 8 (2013) 3556–3573.
  35. I. Tsibranska, E. Hristova, Comparison of different kinetic models for adsorption of heavy metals onto activated carbon from apricot stones, Bulg. Chem. Commun., 43 (2011) 370–377.
  36. C. Sutherland, C. Venkobachar, A diffusion-chemisorption kinetic model for simulating biosorption using forest macro-fungus, Fomes fasciatus, Int. Res. J. Pl. Sci., 1 (2010) 107–117.
  37. K. Mohd-Yusof, Development, analysis and comparison of connectionist models for real-time optimization, PhD Thesis, University of Waterloo, Ontario Canada, 2001.
  38. Z. Shahryari, A. Sharifi, A. Mohebbi, Artificial neural network (ANN) approach for modeling and formulation of phenol adsorption onto activated carbon, J. Eng. Thermophys., 22 (2013) 322–336.
  39. S. Kuvendziev, M. Marinkovski, K. Lisichkov, P. Paunović, Artificial neural network modeling of Cd (II) ions adsorption on nano-porous inorganic sorbents, In: Nanoscience Advances in CBRN Agents Detection, Information and Energy Security, Springer Netherlands, 2015, pp. 469–476.
  40. S. Lek, J.F. Guegan, Artificial neural networks as a tool in ecological modeling, an introduction, Ecol. Modell., 120 (1999) 65–73.
  41. M. Van Der Bean, C. Jutten, Neural networks in geophysical applications, Geophysics, 65 (2000) 1032–1047.
  42. Y. Babazadeh, S.M. Mousavi, M.R. Akbarzadeh, Multidimensional dynamic modeling of milk ultrafiltration using neuro-fuzzy method and a hybrid physical model, Iranian J. Chem. Eng., 5 (2008) 3–22.
  43. B. Duarte, P.M. Saraiva, C.C. Pantelides, Combined mechanistic and empirical modelling, Int. J. Chem. React. Eng., 2 (2004) 1–19.
  44. M.L. Thompson, M.A. Kramer, Modeling chemical processes using prior knowledge and neural networks, AIChE J., 40 (1994) 1328–1340.
  45. C.A. Nascimento, R. Giudici, N. Scherbakoff, Modeling of industrial nylon-6, 6 polymerization process in a twin-screw extruder reactor. II. Neural networks and hybrid models, J. Appl. Polym. Sci., 72 (1999) 905–912.
  46. H.T. Su, N. Bhat, P.A. Minderman, T.J. McAvoy, Integrating neural networks with first principles models for dynamic modeling, IFAC Proceedings, 25 (1992) 327–332.
  47. T. Chai, R.R. Draxler, Root mean square error (RMSE) or mean absolute error (MAE)? - Arguments against avoiding RMSE in the literature, Geosci. Model Dev., 7 (2014) 1247–1250.
  48. P. Chingombe, B. Saha, R.J. Wakeman, Surface modification and characterisation of a coal-based activated carbon, Carbon, 43 (2005) 3132–3143.
  49. E. Romera, F. Gonzalez, A. Ballester, M.L. Blazquez, J.A. Munoz, Biosorption with algae: A statistical review, Crit. Rev. Biotechnol., 26 (2006) 223–235.
  50. V.K. Singh, P.N. Tiwari, Removal and recovery of chromium (VI) from industrial waste water, J. Chem. Technol. Biotechnol., 69 (1997) 376–382.
  51. A. Anandan, T. Janakiram, Adsorption of Cr(VI) from aqueous solutions by low cost activated carbon, J. Chem. Pharm. Res., 4 (2012) 2900–2905.
  52. Y.J.P. Poots, G. McKay, J. Healy, The removal of acid dye from effluent using natural adsorbents - I Peat, Water Res., 10 (1976) 1061–1066.
  53. K.K. Choy, D.C. Ko, C.W. Cheung, J.F. Porter, G. McKay, Film and intraparticle mass transfer during the adsorption of metal ions onto bone char, J. Colloid Interface Sci., 271 (2004) 284–295.
  54. M.A.O. Badmus, T.O.K Audu, B.U. Anyata, Removal of lead ion from industrial wastewaters by activated carbon prepared from periwinkle shells (Typanotonus fuscatus), Turkish J. Eng. Env. Sci., 31 (2007) 251–263.
  55. J. Gao, Q. Zhang, K. Su, R. Chen, Y. Peng, Biosorption of acid yellow 17 from aqueous solution by non-living aerobic granular sludge, J. Hazard. Mater., 174 (2010) 215–225.
  56. S.S. Gupta, K.G. Bhattacharyya, Kinetics of adsorption of metal ions on inorganic materials: a review, Adv. Colloid Interfac., 162 (2011) 39–58.
  57. B.S. Chittoo, C. Sutherland, Phosphate removal and recovery using lime-iron sludge: adsorption, desorption, fractal analysis, modeling and optimization using artificial neural network- genetic algorithm, Desal. Water Treat., 63 (2017) 227–240.
  58. Z. Aksu, E. Kabasakal, Batch adsorption of 2, 4-dichlorophenoxy- acetic acid (2, 4-D) from aqueous solution by granular activated carbon, Sep. Purif. Technol., 35 (2004) 223–240.
  59. P. Shanthi, G. Tamilarasan, K. Anitha, S. Karthikeyan, Film and pore diffusion modeling for adsorption of reactive red-4 onto sterculia quadrifida seed shell waste as activated carbon, Rasayan J. Chem., 7 (2014) 229–240.
  60. G.M. Walker, L.R. Weatherley, Kinetics of acid dye adsorption on GAC, Water Res., 33 (1999) 1895–1899.
  61. K. Yetilmezsoy, Modeling studies for the determination of completely mixed activated sludge reactor volume: Steadystate, empirical and ANN applications, Neural Netw. World, 20 (2010) 559–589.
  62. C.W. Dawson, C. Harpham, R.L. Wilby, Y. Chen, Evaluation of artificial neural network techniques for flow forecasting in the River Yangtze, China, Hydrol. Earth Syst. Sci. Discuss., 6 (2002) 619–626.
  63. D. Giavarina, Understanding bland altman analysis, Biochemia. Medica., 25 (2015) 141–151.
  64. C. Bunce, Correlation, agreement, and Bland–Altman analysis: statistical analysis of method comparison studies, Am. J. Ophthalmol., 148 (2009) 4–6.
  65. K. Yetilmezsoy, S. Demirel, Artificial neural network (ANN) approach for modelling of Pb(II) adsorption from aqueous solution by Antep pistachio (Pistacia Vera L.) shells, J. Hazard. Mater., 153 (2008) 1288–1300.