References

  1. C. Daughton, T. Ternes, Pharmaceuticals & Personal Care Products in the Environment: An Emerging Concern?, Environ. Health. Perspect., 107 (1999) 907–939.
  2. P. Verlicchi, A. Galletti, M. Petrovic, D. Barceló, Hospital effluents as a source of emerging pollutants: an overview of micropollutants and sustainable treatment options, J. Hydrol., 389 (2010) 416–428.
  3. D. Błędzka, J. Gromadzińska, W. Wąsowicz, Parabens. From environmental studies to human health, Environ. Int., 67 (2014) 27–42.
  4. Y.A. Londoño, G.A. Peñuela, Biological removal of different concentrations of ibuprofen and methylparaben in a sequencing batch reactor (SBR), Water. Air. Soil. Pollut., 226 (2015) 1–10.
  5. Y. Chen, P. Deng, P. Xie, R. Shang, Z. Wang, S. Wang, Heat-activated persulfate oxidation of methyl-and ethyl-parabens: Effect, kinetics, and mechanism, Chemosphere, 168 (2017) 1628–1636.
  6. M. Soni, I. Carabin, G. Burdock, Safety assessment of esters of p-hydroxybenzoic acid (parabens), Food. Chem. Toxicol., 43 (2005) 985–1015.
  7. L. Núñez, J. Tadeo, A. García-Valcárcel, E. Turiel, Determination of parabens in environmental solid samples by ultrasonic-assisted extraction and liquid chromatography with triple quadrupole mass spectrometry, J. Chromatogr. A., 1214 (2008) 178–182.
  8. V. Čiuvašovaitė, E. Adomavičiūtė, V. Vičkačkaitė, Solid-phase microextraction of parabens by polyaniline–polypyrrole coating, Chemija, 18 (2007) 11–15.
  9. G. Shanmugam, B.R. Ramaswamy, V. Radhakrishnan, H. Tao, GC–MS method for the determination of paraben preservatives in the human breast cancerous tissue, Microchem. J., 96 (2010) 391–396.
  10. P. Darbre, A. Aljarrah, W. Miller, N. Coldham, M. Sauer, G. Pope, Concentrations of parabens in human breast tumours, J. Appl. Toxicol., 24 (2004) 5–13.
  11. G.A. Loraine, M.E. Pettigrove, Seasonal variations in concentrations of pharmaceuticals and personal care products in drinking water and reclaimed wastewater in southern California, Environ. Sci. Technol., 40 (2006) 687–695.
  12. H.-B. Lee, T.E. Peart, M.L. Svoboda, Determination of endocrine-disrupting phenols, acidic pharmaceuticals, and personal-care products in sewage by solid-phase extraction and gas chromatography–mass spectrometry, J. Chromatogr. A., 1094 (2005) 122–129.
  13. B. Kasprzyk-Hordern, R.M. Dinsdale, A.J. Guwy, The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK, Water Res., 42 (2008) 3498–3518.
  14. M. Terasaki, M. Makino, N. Tatarazako, Acute toxicity of parabens and their chlorinated by‐products with Daphnia magna and Vibrio fischeri bioassays, J. Appl. Toxicol., 29 (2009) 242– 247.
  15. M. Terasaki, Y. Takemura, M. Makino, Paraben-chlorinated derivatives in river waters, Environ. Chem. Lett., 10 (2012) 401–406.
  16. X. Peng, Y. Yu, C. Tang, J. Tan, Q. Huang, Z. Wang, Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China, Sci. Total. Environ., 397 (2008) 158–166.
  17. Y. Yu, Q. Huang, Z. Wang, K. Zhang, C. Tang, J. Cui, J. Feng, X. Peng, Occurrence and behavior of pharmaceuticals, steroid hormones, and endocrine-disrupting personal care products in wastewater and the recipient river water of the Pearl River Delta, South China, J. Environ. Monitor., 13 (2011) 871–878.
  18. X. Peng, W. Ou, C. Wang, Z. Wang, Q. Huang, J. Jin, J. Tan, Occurrence and ecological potential of pharmaceuticals and personal care products in groundwater and reservoirs in the vicinity of municipal landfills in China, Sci. Total. Environ., 490 (2014) 889–898.
  19. I. González-Mariño, J.B. Quintana, I. Rodríguez, R. Cela, Evaluation of the occurrence and biodegradation of parabens and halogenated by-products in wastewater by accurate-mass liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-QTOF-MS), Water. Res., 45 (2011) 6770–6780.
  20. N. Jonkers, H.-P.E. Kohler, A. Dammshäuser, W. Giger, Mass flows of endocrine disruptors in the Glatt River during varying weather conditions, Environ. Pollu., 157 (2009) 714–723.
  21. S.-M. Lam, J.-C. Sin, A.Z. Abdullah, A.R. Mohamed, Green hydrothermal synthesis of ZnO nanotubes for photocatalytic degradation of methylparaben, Mater. Lett., 93 (2013) 423–426.
  22. J. Sánchez-Martín, J. Beltrán-Heredia, J. Domínguez, Advanced photochemical degradation of emerging pollutants: methylparaben, Water. Air. Soil. Pollut., 224 (2013) 1–12.
  23. K.S. Tay, N.A. Rahman, M.R.B. Abas, Ozonation of parabens in aqueous solution: Kinetics and mechanism of degradation, Chemosphere, 81 (2010) 1446–1453.
  24. D. Dobrin, M. Magureanu, C. Bradu, N. Mandache, P. Ionita, V. Parvulescu, Degradation of methylparaben in water by corona plasma coupled with ozonation, Environ. Sci. Pollu. R., 21 (2014) 12190–12197.
  25. E.M. Cuerda-Correa, J.n.R. Domı́nguez-Vargas, M.J. Muñoz-Peña, T. González, Ultraviolet-photoassisted advanced oxidation of parabens catalyzed by hydrogen peroxide and titanium dioxide. Improving the system, Ind. Eng. Chem. R., 55 (2016) 5152–5160.
  26. J. Hu, G. Chen, I.M. Lo, Removal and recovery of Cr (VI) from wastewater by maghemite nanoparticles, Water Res., 39 (2005) 4528–4536.
  27. A.D. Sezer, Recent Advances in Novel Drug Carrier System, InTech, 2012.
  28. T. Neuberger, B. Schöpf, H. Hofmann, M. Hofmann, B. Von Rechenberg, Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system, J. Magn. Magn. Mater., 293 (2005) 483–496.
  29. J.H. Jung, J.H. Lee, S. Shinkai, Functionalized magnetic nanoparticles as chemosensors and adsorbents for toxic metal ions in environmental and biological fields, Chem. Soc. Rev., 40 (2011) 4464–4474.
  30. R. Weissleder, A. Bogdanov, E.A. Neuwelt, M. Papisov, Long-circulating iron oxides for MR imaging, Adv. Drug. Deliver. Rev., 16 (1995) 321–334.
  31. E. Neuwelt, P. Varallyay, A. Bago, L. Muldoon, G. Nesbit, R. Nixon, Imaging of iron oxide nanoparticles by MR and light microscopy in patients with malignant brain tumours, Neuropath. Appl. Neuro., 30 (2004) 456–471.
  32. Y.-X.J. Wang, S.M. Hussain, G.P. Krestin, Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging, Eur. Radiol., 11 (2001) 2319–2331.
  33. J. Wang, C. Zheng, S. Ding, H. Ma, Y. Ji, Behaviors and mechanisms of tannic acid adsorption on an amino-functionalized magnetic nanoadsorbent, Desalination, 273 (2011) 285–291.
  34. Y.-C. Chang, D.-H. Chen, Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu (II) ions, J. Colloid. Interf. Sci., 283 (2005) 446–451.
  35. Y. He, S. Wang, C. Li, Y. Miao, Z. Wu, B. Zou, Synthesis and characterization of functionalized silica-coated Fe3O4 superparamagnetic nanocrystals for biological applications, J. Phys. D. Appl. Phys., 38 (2005) 1342.
  36. J. Xu, C. Ju, J. Sheng, F. Wang, Q. Zhang, G. Sun, M. Sun, Synthesis and characterization of magnetic nanoparticles and its application in lipase immobilization, B. Kor. Chem. Soc., 34 (2013) 2408–2412.
  37. V.K. Gupta, A. Fakhri, M. Azad, S. Agarwal, Synthesis of CdSe quantum dots decorated SnO2 nanotubes as anode for photo-assisted electrochemical degradation of hydrochlorothiazide: Kinetic process, J. Colloid. Interface. Sci., 508 (2017) 575–582.
  38. V.K. Gupta, A. Fakhri, S. Agarwal, M. Azad, Synthesis and characterization of Ag2S decorated chitosan nanocomposites and chitosan nanofibers for removal of lincosamides antibiotic, Int. J. Biol. Macromolec., 103 (2017) 1–7.
  39. R. Khosravi, A. Azizi, R. Ghaedrahmati, V.K. Gupta, S. Agarwal, Adsorption of gold from cyanide leaching solution onto activated carbon originating from coconut shell—Optimization, kinetics and equilibrium studies, J. Ind. Eng. Chem., 54 (2017) 464–471.
  40. V.K. Gupta, A. Fakhri, S. Rashidi, A.A. Ibrahim, M. Asif, S. Agarwal, Optimization of toxic biological compound adsorption from aqueous solution onto Silicon and Silicon carbide nanoparticles through response surface methodology, Mater. Sci. Eng. C, 77 (2017) 1128–1134.
  41. V.K. Gupta, S. Agarwal, H. Sadegh, G.A.M. Ali, A.K. Bharti, A.S.H. Makhlouf, Facile route synthesis of novel graphene oxide-β-cyclodextrin nanocomposite and its application as adsorbent for removal of toxic bisphenol A from the aqueous phase, J. Mol. Liq., 237 (2017) 466–472.
  42. E. Mäkilä, L.M. Bimbo, M. Kaasalainen, B. Herranz, A.J. Airaksinen, M. Heinonen, E. Kukk, J. Hirvonen, H.l.A. Santos, J. Salonen, Amine modification of thermally carbonized porous silicon with silane coupling chemistry, Langmuir, 28 (2012) 14045–14054.
  43. K. Can, M. Ozmen, M. Ersoz, Immobilization of albumin on aminosilane modified superparamagnetic magnetite nanoparticles and its characterization, Colloid. Surface. B, 71 (2009) 154–159.
  44. A. Subramanian, S.J. Kennel, P.I. Oden, K.B. Jacobson, J. Woodward, M.J. Doktycz, Comparison of techniques for enzyme immobilization on silicon supports, Enzyme. Microb. Tech., 24 (1999) 26–34.
  45. A.H. Lu, E.e.L. Salabas, F. Schüth, Magnetic nanoparticles: synthesis, protection, functionalization, and application, Angew. Chem. Int. Ed., 46 (2007) 1222–1244.
  46. M. Mikhaylova, D.K. Kim, C.C. Berry, A. Zagorodni, M. Toprak, A.S. Curtis, M. Muhammed, BSA immobilization on amine-functionalized superparamagnetic iron oxide nanoparticles, Chem. Mater., 16 (2004) 2344–2354.
  47. D. Loomis, K. Guyton, Y. Grosse, F. El Ghissasi, V. Bouvard, L. Benbrahim-Tallaa, N. Guha, H. Mattock, K. Straif, L. IARC, Carcinogenicity of lindane, DDT, and 2, 4-dichlorophenoxyacetic acid, Lancet. Oncol., 16 (2015) 891.
  48. F.J. Benitez, J.L. Acero, F.J. Real, S. Roman, Oxidation of MCPA and 2, 4-D by UV radiation, ozone, and the combinations UV/H2O2 and O3/H2O2, J. Environ. Sci. Health. B, 39 (2004) 393–409.
  49. S. Mangat, P. Elefsiniotis, Biodegradation of the herbicide 2, 4-dichlorophenoxyacetic acid (2, 4-D) in sequencing batch reactors, Water Res., 33 (1999) 861–867.
  50. Y. Liu, Y. Li, X.-M. Li, T. He, Kinetics of (3-aminopropyl) triethoxylsilane (APTES) silanization of superparamagnetic iron oxide nanoparticles, Langmuir, 29 (2013) 15275–15282.
  51. X. Yi, W. Shi, S. Yu, Y. Wang, N. Sun, L. Jin, S. Wang, Isotherm and kinetic behavior of adsorption of anion polyacrylamide (APAM) from aqueous solution using two kinds of PVDF UF membranes, J. Hazard. Mater., 189 (2011) 495–501.
  52. Y. Xue, H. Hou, S. Zhu, Adsorption removal of reactive dyes from aqueous solution by modified basic oxygen furnace slag: isotherm and kinetic study, Chem. Eng. J., 147 (2009) 272–279.
  53. B. Kakavandi, A. Jonidi, R. Rezaei, S. Nasseri, A. Ameri, A. Esrafily, Synthesis and properties of Fe3O4-activated carbon magnetic nanoparticles for removal of aniline from aqueous solution: equilibrium, kinetic and thermodynamic studies, Iran. J. Environ. Health. Sci. Engin., 10 (2013) 19.
  54. A.A. Babaei, A. Khataee, E. Ahmadpour, M. Sheydaei, B. Kakavandi, Z. Alaee, Optimization of cationic dye adsorption on activated spent tea: Equilibrium, kinetics, thermodynamic and artificial neural network modeling, Kor. J. Chem. Engin., 33 (2016) 1352–1361.
  55. F.J. Beltrán, P. Pocostales, P. Alvarez, A. Oropesa, Diclofenac removal from water with ozone and activated carbon, J. Hazard. Mater., 163 (2009) 768–776.
  56. R.F. Gunst, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, in, Taylor & Francis Group. 1996.
  57. K. Yetilmezsoy, S. Demirel, R.J. Vanderbei, Response surface modeling of Pb (II) removal from aqueous solution by Pistacia vera L.: Box–Behnken experimental design, J. Hazard. Mater., 171 (2009) 551–562.
  58. R. Ragonese, M. Macka, J. Hughes, P. Petocz, The use of the Box–Behnken experimental design in the optimisation and robustness testing of a capillary electrophoresis method for the analysis of ethambutol hydrochloride in a pharmaceutical formulation, J. Pharmaceutic. Biomed., 27 (2002) 995–1007.
  59. G. Annadurai, R. Sheeja, Use of Box-Behnken design of experiments for the adsorption of verofix red using biopolymer, Bioprocess. Biosyst. Eng., 18 (1998) 463–466.
  60. A. Kumar, B. Prasad, I. Mishra, Optimization of process parameters for acrylonitrile removal by a low-cost adsorbent using Box–Behnken design, J. Hazard. Mater., 150 (2008) 174–182.
  61. T. Yang, C. Shen, Z. Li, H. Zhang, C. Xiao, S. Chen, Z. Xu, D. Shi, J. Li, H. Gao, Highly ordered self-assembly with large area of Fe3O4 nanoparticles and the magnetic properties, J. Phys. Chem. B, 109 (2005) 23233–23236.
  62. M. Yamaura, R. Camilo, L. Sampaio, M. Macedo, M. Nakamura, H. Toma, Preparation and characterization of (3-aminopropyl) triethoxysilane-coated magnetite nanoparticles, J. Magn. Magn. Mater., 279 (2004) 210–217.
  63. M. Behbahani, S. Bagheri, M.M. Amini, H. Sadeghi, Abandansari, H.R. Moazami, A. Bagheri, Application of a magnetic molecularly imprinted polymer for the selective extraction and trace detection of lamotrigine in urine and plasma samples, J. Sep. Sci., 37 (2014) 1610–1616.
  64. M. Ghambarian, M. Behbahani, A. Esrafili, H.R. Sobhi, Application of a dispersive solid‐phase extraction method using an amino‐based silica-coated nanomagnetic sorbent for the trace quantification of chlorophenoxyacetic acids in water samples, J. Sep. Sci., 40 (2017) 3479–3486.
  65. J. Safari, Z. Zarnegar, Ultrasonic activated efficient synthesis of chromenes using amino-silane modified Fe3O4 nanoparticles: a versatile integration of high catalytic activity and facile recovery, J. Mol. Struct., 1072 (2014) 53–60.
  66. R. Bhaumik, N.K. Mondal, S. Chattoraj, J.K. Datta, Application of response surface methodology for optimization of fluoride removal mechanism by newly developed biomaterial, Am. J. Analyt. Chem., 4 (2013) 404.
  67. P. Tripathi, V.C. Srivastava, A. Kumar, Optimization of an azo dye batch adsorption parameters using Box–Behnken design, Desalination, 249 (2009) 1273–1279.
  68. D. Liu, Z. Li, W. Li, Z. Zhong, J. Xu, J. Ren, Z. Ma, Adsorption behavior of heavy metal ions from aqueous solution by soy protein hollow microspheres, Ind. Eng. Chem. Res., 52 (2013) 11036–11044.
  69. M. Meng, Z. Wang, L. Ma, M. Zhang, J. Wang, X. Dai, Y. Yan, Selective adsorption of methylparaben by submicrosized molecularly imprinted polymer: batch and dynamic flow mode studies, Ind. Eng. Chem. Res., 51 (2012) 14915–14924.
  70. M. Mahdavi, M.B. Ahmad, M.J. Haron, Y. Gharayebi, K. Shameli, B. Nadi, Fabrication and characterization of SiO2/(3-aminopropyl) triethoxysilane-coated magnetite nanoparticles for lead (II) removal from aqueous solution, J. Inorg. Organomet. Polym. Mater., 23 (2013) 599–607.
  71. M. Anbia, M. Lashgari, Synthesis of amino-modified ordered mesoporous silica as a new nano sorbent for the removal of chlorophenols from aqueous media, Chem. Engin. J., 150 (2009) 555–560.
  72. J. Wang, S. Zheng, Y. Shao, J. Liu, Z. Xu, D. Zhu, Amino-functionalized Fe3O4@SiO2 core–shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal, J. Colloid. Interface. Sci., 349 (2010) 293–299.
  73. H. Barndõk, D. Hermosilla, C. Han, D.D. Dionysiou, C. Negro, Á. Blanco, Degradation of 1, 4-dioxane from industrial wastewater by solar photocatalysis using immobilized NF-TiO2 composite with monodisperse TiO2 nanoparticles, Appl. Catal. B, 180 (2016) 44–52.
  74. R. Tabaraki, S. Ahmady-Asbchin, O. Abdi, Biosorption of Zn(II) from aqueous solutions by Acinetobacter sp. isolated from petroleum spilled soil, J. Environ. Chem. Engin., 1 (2013) 604–608.
  75. U. Guyo, J. Mhonyera, M. Moyo, Pb(II) adsorption from aqueous solutions by raw and treated biomass of maize stover – A comparative study, Process. Saf. Environ., 93 (2015) 192–200.
  76. J. Zhang, S. Zhai, S. Li, Z. Xiao, Y. Song, Q. An, G. Tian, Pb (II) removal of Fe3O4@SiO2–NH2 core–shell nanomaterials prepared via a controllable sol–gel process, Chem. Engin. J., 215 (2013) 461–471.
  77. Y.-G. Zhao, H.-Y. Shen, S.-D. Pan, M.-Q. Hu, Q.-H. Xia, Preparation and characterization of amino-functionalized nano-Fe3O4 magnetic polymer adsorbents for removal of chromium (VI) ions, J. Mater. Sci., 45 (2010) 5291–5301.
  78. Z. Aksu, E. Kabasakal, Batch adsorption of 2, 4-dichlorophenoxy-acetic acid (2, 4-D) from aqueous solution by granular activated carbon, Sep. Purif. Technol., 35 (2004) 223–240.
  79. T. Velegraki, E. Hapeshi, D. Fatta-Kassinos, I. Poulios, Solar-induced heterogeneous photocatalytic degradation of methylparaben, Appl. Catal. B., 178 (2015) 2–11.
  80. H. Zúñiga-Benítez, C. Aristizábal-Ciro, G.A. Peñuela, Photodegradation of the endocrine-disrupting chemicals benzophenone-3 and methylparaben using Fenton reagent: optimization of factors and mineralization/biodegradability studies, J. Taiwan. Inst. Chem. Eng., 59 (2016) 380–388.
  81. J. Zhang, S. Zhai, S. Li, Z. Xiao, Y. Song, Q. An, G. Tian, Pb (II) removal of Fe3O4@SiO2–NH2 core–shell nanomaterials prepared via a controllable sol–gel process, Chem. Eng. J., 215 (2013) 461–471.
  82. J. Wang, C. Zheng, S. Ding, H. Ma, Y. Ji, Behaviors and mechanisms of tannic acid adsorption on an amino-functionalized magnetic nanoadsorbent, Desalination, 273 (2011) 285–291.
  83. H.W. Chen, C.S. Chiou, S.H. Chang, Comparison of methylparaben, ethylparaben and propylparaben adsorption onto magnetic nanoparticles with phenyl group, Powder Technol., 311 (2017) 426–431.
  84. N.Y. Delgado, A.L. Capparelli, D.J. Marino, A.F. Navarro, G.A. Peñuela, A.E. Ronco, Adsorption of pharmaceuticals and personal care products on granular activated carbon, J. Surf. Eng. Mater. Adv. Technol., 6(2016) 183–200.