References

  1. G.R. Guillen, Y. Pan, M. Li, E.M.V. Hoek, Preparation and characterization of membranes formed by non solvent induced phase separation: a review, Ind. Eng. Chem. Res., 50 (2011) 3798–3817.
  2. W.Z. Lang, J.P. Shen, Y.T. Wei, Q.Y. Wu, J. Wang, Y.J. Guo, Precipitation kinetics, morphologies, and properties of poly(vinyl butyral) hollow fiber ultrafiltration membranes with respect to polyvinylpyrrolidone molecular weight, Chem. Eng. J., 225 (2013) 25–33.
  3. H. Strathmann, K. Kock, P. Amar, RW. Baker, The formation mechanism of asymmetric membranes, Desalination, 16 (1975) 179–203.
  4. F.J. Paulsen, S.S. Shojaie, W.B. Krantz, Effect of evaporation step on macrovoid defect formation in wet–cast polymeric membranes, J. Membr. Sci., 91 (1994) 265–282.
  5. W.F.C. Kools, Membrane Formation by Phase Inversion in Multicomponent Polymer System, Mechanisms and Morphologies, PhD thesis; University of Twente, 1998.
  6. J. Shieh, T.S. Chung, Effect of liquid-liquid demixing on the membrane morphology, gas permeation, thermal and mechanical properties of cellulose acetate hollow fibers, J. Membr. Sci., 140 (1998) 67–79.
  7. Z. Li, J. Ren, A.G. Fane, D.F. Li, F. Wong, Influence of solvent on the structure and performance of cellulose acetate membranes, J. Membr. Sci., 279 (2006) 601–607.
  8. W.L. Hung, D.M. Wang, J.Y. Lai, S.C. Chou, On the initiation of macrovoids in polymeric membranes – effect of polymer chain entanglement, J. Membr. Sci., 505 (2016) 70–81.
  9. D. Li, T.S. Chung, J. Ren, R. Wang, Thickness dependence of macrovoid evolution in wet phase-inversion asymmetric membranes, Ind. Eng. Chem. Res., 43 (2004) 1553–1556.
  10. M. Mulder, Basic Principle of Membrane Technology, Kluwer Academic Publisher, London, 1997.
  11. Y.H. See-Toh, M. Silva, A. Livingston, Controlling molecular weight cut-off curves for highly solvent stable organic solvent nanofiltration (OSN) membranes, J. Membr. Sci., 324 (2008) 220-232.
  12. Z. Maghsoud, M.H. Navid famili, S.S. Madaeni, Preparation of polyvinylcholoride membranes from solvent mixture by immersion precipitation, J. Appl. Polym. Sci., 131 (2014) 40206.
  13. M. Sadrzadeh, S. Bhattacharjee, Rational design of phase inversion membranes by tailoring thermodynamics and kinetics of casting solution using polymer additives, J. Membr. Sci., 441 (2013) 31–44.
  14. J. Han, W. Lee, J.M. Choi, R. Patel, B.R. Min, Characterization of polyethersulfone/polyimide blend membranes prepared by a dry/wet phase inversion: Precipitation kinetics, morphology and gas separation, J. Membr. Sci., 351 (2010) 141–148.
  15. G.R. Fernandes, J.C. Pinto, R. Nobrega, Preparation, modeling and simulation of the phase-inversion process during membrane, J. Appl. Polym. Sci., 82 (2001) 3036–3051.
  16. Y. Yun, P. Le-Clech, G. Dong, D. Sun, Y. Wang, P. Qin, Z. Chen, J. Li, C. Chen, Formation kinetics and characterization of polyphthalazinone ether ketone hollow fiber ultrafiltration membranes, J. Membr. Sci., 389 (2012) 416–423.
  17. X. Li, C. Chen, J. Li, Formation kinetics of polyethersulfone with cardo membrane via phase inversion, J. Membr. Sci., 314 (2008) 206–211.
  18. Q.Z. Zheng, P. Wang, Y.N. Yang, D.J. Cui, The relationship between porosity and kinetics parameter of membrane formation in PSF ultrafiltration membrane, J. Membr. Sci., 286 (2006) 7–11.
  19. S. Arbab, P. Noorpanah, N. Mohammadi, M. Soleimani, Designing index of void structure and tensile properties in wet-spun polyacrylonitrile (PAN) fiber. I. effect of dope polymer or nonsolvent concentration, J. Appl. Polym. Sci., 109 (2008) 3461–3469.
  20. M. Bazarjani, N. Mohammadi, S.M. Ghasemi, Ranking the key parameters of immersion precipitation process and modeling the resultant membrane structural evolution, J. Appl. Polym. Sci., 113 (2009) 1529–1538.
  21. S.M. Ghasemi, N. Mohammadi, The prediction of polymeric membrane characteristics prepared via non solvent induced phase separation by the apparent coagulation time, Polymer, 54 (2013) 4675–4685.
  22. S.M. Ghasemi, N. Mohammadi, The Apparent coagulation time as a tool to predict immersion precipitated polymeric membrane characteristics, The 8th International Chemical Engineering Congress (IChEC), Kish island, Iran, 2014.
  23. M. Shi, G. Printsypar, O. Iliev, V.M. Calo, S.P. Nunes, G.L. Amy, Water flow prediction for membranes using 3D simulations with detailed morphology, J. Membr. Sci., 487 (2015) 19–31.
  24. C. Nurra, L. Pitol-Filho, R. Carraud, S. Pertuz, D. Puig, M.A. Garcia, J. Salvad, C. Torras, Toward the prediction of porous membrane permeability from morphological data, J. Polym. Eng. Sci., (2016) 118–124.
  25. Y.I. Cho, J.P. Hartnett, The falling ball viscometer - a new instrument for viscoelastic fluids, Lett. Heat Mass Transfer, 6 (1979) 335–342.
  26. Y.I. Cho, J.P. Hartnett, W.Y. Lee, Non-new tonian viscosity measurements in the intermediate shear rate range with the falling ball viscometer, J. Non-Newtonian Fluid Mech., 15 (1984) 61–74.
  27. T.A. Butcher, T.F. Irvine, Use of the falling ball viscometer to obtain flow curves for inelastic, non-newtonian fluids, J. Non-Newtonian Fluid Mech., 36 (1990) 51–70.
  28. S. Zhang, K.Y. Wang, T.S. Chung, Y.C. Jean, H. Chen, Molecular design of the cellulose ester-based forward osmosis membranes for desalination, J. Chem. Eng. Sci., 66 (2011) 2008–2018.
  29. A.V.G. Ruzette, A.M. Mayes, A simple free energy model for weakly interacting polymer blends, Macromolecules, 34 (2001) 1894–1907.
  30. S.S. Madaeni, L. Bakhtiari, Thermodynamic-based predictions of membrane morphology in water/dimethylsulfoxide/polyethersulfone systems, Polymer, 53 (2012) 4481–4488.
  31. J.A. Gonzalez-Leon, A.M. Mayes, Phase behavior prediction of ternary polymer mixtures, Macromolecule, 36 (2003) 2508– 2515.
  32. Z. Maghsoud, M.H. Navid Famili, S.S. Madaeni, Phase diagram calculations of water/tetrahydrofuran/poly(vinyl chloride) ternary system based on a compressible regular solution model, Iran. Polym. J., 19(8) (2010) 581–588.
  33. L. Zeman, G. Tkacik, Thermodynamic analysis of a membrane forming system water/N-methyl-2-pyrrolidone/polyethersulfone, J. Membr. Sci., 36 (1988) 119–140.
  34. A.J. Reuvers, C.A. Smolders, Formation of membranes by means of immersion precipitation. part II. The mechanism of membranes prepared from the system cellulose acetate- acetone- water, J. Membr. Sci., 34 (1987) 67–86.
  35. Y.M. Wei, Z.L. Xu, X.T. Yang, H.L. Liu, Mathematical calculation of binodal curves of a polymer/solvent/non solvent system in the phase inversion process, Desalination, 192 (2006) 91–104.
  36. R.M. Boom, Th. van den Boomgaard, J.W.A. van den Berg, C.A. Smolders, Linearized cloud point curve correlation for ternary systems consisting of one polymer, one solvent and one non-solvent, Polymer, 34 (1993) 2348–2356.
  37. M.L. Yeow, Y.T. Liu, K. Li, Morphological study of poly (vinylidene fluoride) asymmetric membranes: effects of the solvent, additive, and dope temperature, J. Appl. Polym. Sci., 92 (2004) 1782–1789.
  38. D.Y. Xing, N. Peng, T.S. Chung, Formation of cellulose acetate membranes via phase inversion using ionic liquid, [BMIM] SCN, as the solvent, Ind. Eng. Chem. Res., (2010) 8761–8769.
  39. Z. Zhang, Q. An, Y. Ji, J. Qian, C. Gao, Effect of zero shear viscosity of the casting solution on the morphology and permeability of poly sulfone membrane prepared via the phase-inversion process, Desalination, 260 (2010) 43–50.