References
- G.R. Guillen, Y. Pan, M. Li, E.M.V. Hoek, Preparation and characterization
of membranes formed by non solvent induced
phase separation: a review, Ind. Eng. Chem. Res., 50 (2011)
3798–3817.
- W.Z. Lang, J.P. Shen, Y.T. Wei, Q.Y. Wu, J. Wang, Y.J. Guo, Precipitation
kinetics, morphologies, and properties of poly(vinyl
butyral) hollow fiber ultrafiltration membranes with respect
to polyvinylpyrrolidone molecular weight, Chem. Eng. J., 225
(2013) 25–33.
- H. Strathmann, K. Kock, P. Amar, RW. Baker, The formation
mechanism of asymmetric membranes, Desalination, 16 (1975)
179–203.
- F.J. Paulsen, S.S. Shojaie, W.B. Krantz, Effect of evaporation
step on macrovoid defect formation in wet–cast polymeric
membranes, J. Membr. Sci., 91 (1994) 265–282.
- W.F.C. Kools, Membrane Formation by Phase Inversion in Multicomponent
Polymer System, Mechanisms and Morphologies,
PhD thesis; University of Twente, 1998.
- J. Shieh, T.S. Chung, Effect of liquid-liquid demixing on the
membrane morphology, gas permeation, thermal and mechanical
properties of cellulose acetate hollow fibers, J. Membr. Sci.,
140 (1998) 67–79.
- Z. Li, J. Ren, A.G. Fane, D.F. Li, F. Wong, Influence of solvent
on the structure and performance of cellulose acetate membranes,
J. Membr. Sci., 279 (2006) 601–607.
- W.L. Hung, D.M. Wang, J.Y. Lai, S.C. Chou, On the initiation of
macrovoids in polymeric membranes – effect of polymer chain
entanglement, J. Membr. Sci., 505 (2016) 70–81.
- D. Li, T.S. Chung, J. Ren, R. Wang, Thickness dependence
of macrovoid evolution in wet phase-inversion asymmetric
membranes, Ind. Eng. Chem. Res., 43 (2004) 1553–1556.
- M. Mulder, Basic Principle of Membrane Technology, Kluwer
Academic Publisher, London, 1997.
- Y.H. See-Toh, M. Silva, A. Livingston, Controlling molecular
weight cut-off curves for highly solvent stable organic solvent
nanofiltration (OSN) membranes, J. Membr. Sci., 324 (2008)
220-232.
- Z. Maghsoud, M.H. Navid famili, S.S. Madaeni, Preparation
of polyvinylcholoride membranes from solvent mixture
by immersion precipitation, J. Appl. Polym. Sci., 131 (2014)
40206.
- M. Sadrzadeh, S. Bhattacharjee, Rational design of phase
inversion membranes by tailoring thermodynamics and kinetics
of casting solution using polymer additives, J. Membr. Sci.,
441 (2013) 31–44.
- J. Han, W. Lee, J.M. Choi, R. Patel, B.R. Min, Characterization
of polyethersulfone/polyimide blend membranes prepared
by a dry/wet phase inversion: Precipitation kinetics,
morphology and gas separation, J. Membr. Sci., 351 (2010)
141–148.
- G.R. Fernandes, J.C. Pinto, R. Nobrega, Preparation, modeling
and simulation of the phase-inversion process during membrane,
J. Appl. Polym. Sci., 82 (2001) 3036–3051.
- Y. Yun, P. Le-Clech, G. Dong, D. Sun, Y. Wang, P. Qin, Z.
Chen, J. Li, C. Chen, Formation kinetics and characterization
of polyphthalazinone ether ketone hollow fiber ultrafiltration
membranes, J. Membr. Sci., 389 (2012) 416–423.
- X. Li, C. Chen, J. Li, Formation kinetics of polyethersulfone
with cardo membrane via phase inversion, J. Membr. Sci., 314
(2008) 206–211.
- Q.Z. Zheng, P. Wang, Y.N. Yang, D.J. Cui, The relationship
between porosity and kinetics parameter of membrane formation
in PSF ultrafiltration membrane, J. Membr. Sci., 286 (2006)
7–11.
- S. Arbab, P. Noorpanah, N. Mohammadi, M. Soleimani,
Designing index of void structure and tensile properties in
wet-spun polyacrylonitrile (PAN) fiber. I. effect of dope polymer
or nonsolvent concentration, J. Appl. Polym. Sci., 109
(2008) 3461–3469.
- M. Bazarjani, N. Mohammadi, S.M. Ghasemi, Ranking the key
parameters of immersion precipitation process and modeling
the resultant membrane structural evolution, J. Appl. Polym.
Sci., 113 (2009) 1529–1538.
- S.M. Ghasemi, N. Mohammadi, The prediction of polymeric
membrane characteristics prepared via non solvent induced
phase separation by the apparent coagulation time, Polymer,
54 (2013) 4675–4685.
- S.M. Ghasemi, N. Mohammadi, The Apparent coagulation
time as a tool to predict immersion precipitated polymeric
membrane characteristics, The 8th International Chemical
Engineering Congress (IChEC), Kish island, Iran, 2014.
- M. Shi, G. Printsypar, O. Iliev, V.M. Calo, S.P. Nunes, G.L. Amy,
Water flow prediction for membranes using 3D simulations
with detailed morphology, J. Membr. Sci., 487 (2015) 19–31.
- C. Nurra, L. Pitol-Filho, R. Carraud, S. Pertuz, D. Puig, M.A.
Garcia, J. Salvad, C. Torras, Toward the prediction of porous
membrane permeability from morphological data, J. Polym.
Eng. Sci., (2016) 118–124.
- Y.I. Cho, J.P. Hartnett, The falling ball viscometer - a new
instrument for viscoelastic fluids, Lett. Heat Mass Transfer, 6
(1979) 335–342.
- Y.I. Cho, J.P. Hartnett, W.Y. Lee, Non-new tonian viscosity measurements
in the intermediate shear rate range with the falling
ball viscometer, J. Non-Newtonian Fluid Mech., 15 (1984)
61–74.
- T.A. Butcher, T.F. Irvine, Use of the falling ball viscometer
to obtain flow curves for inelastic, non-newtonian fluids, J.
Non-Newtonian Fluid Mech., 36 (1990) 51–70.
- S. Zhang, K.Y. Wang, T.S. Chung, Y.C. Jean, H. Chen, Molecular
design of the cellulose ester-based forward osmosis membranes
for desalination, J. Chem. Eng. Sci., 66 (2011) 2008–2018.
- A.V.G. Ruzette, A.M. Mayes, A simple free energy model for
weakly interacting polymer blends, Macromolecules, 34 (2001)
1894–1907.
- S.S. Madaeni, L. Bakhtiari, Thermodynamic-based predictions
of membrane morphology in water/dimethylsulfoxide/polyethersulfone
systems, Polymer, 53 (2012) 4481–4488.
- J.A. Gonzalez-Leon, A.M. Mayes, Phase behavior prediction
of ternary polymer mixtures, Macromolecule, 36 (2003) 2508–
2515.
- Z. Maghsoud, M.H. Navid Famili, S.S. Madaeni, Phase diagram
calculations of water/tetrahydrofuran/poly(vinyl chloride)
ternary system based on a compressible regular solution
model, Iran. Polym. J., 19(8) (2010) 581–588.
- L. Zeman, G. Tkacik, Thermodynamic analysis of a membrane
forming system water/N-methyl-2-pyrrolidone/polyethersulfone,
J. Membr. Sci., 36 (1988) 119–140.
- A.J. Reuvers, C.A. Smolders, Formation of membranes by
means of immersion precipitation. part II. The mechanism of
membranes prepared from the system cellulose acetate- acetone-
water, J. Membr. Sci., 34 (1987) 67–86.
- Y.M. Wei, Z.L. Xu, X.T. Yang, H.L. Liu, Mathematical calculation
of binodal curves of a polymer/solvent/non solvent system
in the phase inversion process, Desalination, 192 (2006)
91–104.
- R.M. Boom, Th. van den Boomgaard, J.W.A. van den Berg, C.A.
Smolders, Linearized cloud point curve correlation for ternary
systems consisting of one polymer, one solvent and one
non-solvent, Polymer, 34 (1993) 2348–2356.
- M.L. Yeow, Y.T. Liu, K. Li, Morphological study of poly
(vinylidene fluoride) asymmetric membranes: effects of the
solvent, additive, and dope temperature, J. Appl. Polym. Sci.,
92 (2004) 1782–1789.
- D.Y. Xing, N. Peng, T.S. Chung, Formation of cellulose acetate
membranes via phase inversion using ionic liquid, [BMIM]
SCN, as the solvent, Ind. Eng. Chem. Res., (2010) 8761–8769.
- Z. Zhang, Q. An, Y. Ji, J. Qian, C. Gao, Effect of zero shear viscosity
of the casting solution on the morphology and permeability
of poly sulfone membrane prepared via the phase-inversion
process, Desalination, 260 (2010) 43–50.