References
- H. Ali, E. Khan, M.A. Sajad, Phytoremediation of heavy metals
– concepts and applications, Chemosphere, 91 (2013) 869–881.
- G. Flora, D. Gupta, A. Tiwari, Toxicity of lead: a review with
recent updates, Interdiscip. Toxicol., 5 (2012) 47–58, doi:
10.2478/v10102-012-0009-2.
- G. Sánchez-Galván, O. Monroy, J. Gómez, E.J. Olguín, Assessment
of the hyperaccumulating lead capacity of Salvinia
minima using bioadsorption and intracellular accumulation
factors, Water Air Soil Pollut., 194 (2008) 77–90.
- K. Kalia, S.J. Flora, Strategies for safe and effective therapeutic
measures for chronic arsenic and lead poisoning, J. Occup.
Health, 47 (2005) 1–21.
- S.H. Abbas, I.M. Ismail, T.M. Mostafa, A.H. Sulaymon, Biosorption
of heavy metals: a review, J. Chem. Sci. Technol., 3
(2014) 74–102.
- D. Sukumaran, D. Phytoremediation of heavy metals from
industrial effluent using constructed wetland technology,
Appl. Ecol. Environ. Sci., 1 (2013) 92–97.
- M.N.V. Prasad, Phytoremediation of metal-polluted ecosystems:
hype for commercialization, Russ. J. Plant Physiol., 50
(2003) 686–700.
- P. Sharma, S. Pandey, Status of phytoremediation in world scenario,
Int. J. Environ. Biorem. Biodeg., 2 (2014) 178–191.
- R. Dixit, E. Wasiullah, D. Malaviya, K. Pandiyan, U.B. Singh, A.
Sahu, R. Shukla, B.P. Singh, J.P. Rai, P. Kumar, H. S. and D. Paul,
Bioremediation of heavy metals from soil and aquatic environment:
an overview of principles and criteria of fundamental
processes, Sustainability, 7 (2015) 2189–2212.
- P.K. Rai, Heavy metal pollution in aquatic ecosystems and its
phytoremediation using wetland plants: an ecosustainable
approach, Int. J. Phytoremediat., 10 (2008) 133–160.
- P.K. Rai, Heavy metal phytoremediation from aquatic ecosystems
with special reference to macrophytes, Crit. Rev. Environ.
Sci. Technol., 39 (2009) 697–753.
- T. Macek, M. Macková, J. Kas, Exploitation of plants for the
removal of contaminants in environmental remediation, Biotechnol.
Adv., 18 (2000) 23–34.
- E.R. De La Sota, Nuevos sinónimos en Salvinia Ség. (Salviniaceae-Pteridophyta), Darwiniana, 33 (1995) 309–313.
- E.J. Olguín, G. Sánchez-Galván, T. Pérez-Pérez, A. Pérez-Orozco, Surface adsorption, intracellular accumulation and
compartmentalization of lead in batch-operated lagoons with
Salvinia minima as affected by environmental conditions, EDTA
and nutrients, J. Ind. Microbiol. Biotechnol., 32 (2005) 577–586.
- N.K. Lazaridis, D.D. Asouhidou, Kinetics of sorption removal
of chromium (VI) from aqueous solutions by calcined
Mg-Al-CO3 hydrotalcite, Water Res., 37 (2003) 2875–2882.
- Y.S. Ho, G. McKay, Pseudo-second order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- Standard methods for the examination of water and wastewater,
American Public Health Association, New York, 1998, 1268 p.
- A. Zayed, S. Gowthaman, N. Terry, Phytoaccumulation of trace
elements by wetland plants: I. Duckweed, J. Environ. Qual., 27
(1998) 715–721.
- B. Dhir, Salvinia: An aquatic fern with potential use in phytoremediation,
Environ. We Int. J. Sci. Tech., 4 (2009) 23–27.
- W. Tello Zevallos, D.B. Loureiro, M.C. Reeves, F. Yujnovsky,
L.M. Salvatierra, L.M. Pérez, Biorremediación de aguas contaminadas
con metales pesados empleando macrófitas autóctonas de
flotación libre. 4to Simposio Argentino de Procesos Biotecnológicos
(SAPROBIO 2016), Buenos Aires, Argentina.
- M.A. Maine, M. Duarte, N. Suñé, Cadmium uptake by floating
macrophytes, Water Res., 35 (2001) 2629–2634.
- S. Mukherjee, S. Kumar, Adsorptive uptake of arsenic (V) from
water by aquatic fern Salvinia natans, J. Water Supply Res. T., 54
(2005) 47–53.
- N. Suñé, G. Sánchez-Galván, S. Caffaratti, M.A. Maine, Cadmium
and chromium removal kinetics from solution by two
aquatic macrophytes, Environ. Pol., 145 (2007) 467–473.
- D. Kratochvil, B. Volesky, Advances in the biosorption of heavy
metals, Trends Biotechnol., 16 (2005) 291–300.
- R. Chakraborty, S. Karmakar, S. Mukherjee, S. Kumar, Kinetic
evaluation of chromium (VI) sorption by water lettuce (Pistia),
Water Sci. Technol., 69 (2014) 195–201.
- D. Paliulis, Numerical modeling of kinetics of heavy metal
sorption from polluted water, J. Environ. Eng. Landsc., 14
(2006) 10–15.
- W. Plazinski, J. Dziuba, W. Rudzinski, Modeling of sorption
kinetics: the pseudo-second order equation and the sorbate
intraparticle diffusivity, Adsorption, 19 (2013) 1055–1064.
- I.A.H. Schneider, J. Rubio, Sorption of heavy metal ions by the
non-living biomass of freshwater macrophytes, Environ. Sci.
Technol., 33 (1999) 2213–2217.
- P. Miretzky, A. Saralegui, A.F. Cirelli, Aquatic macrophytes
potential for the simultaneous removal of heavy metals (Buenos
Aires, Argentina), Chemosphere, 57 (2004) 997–1005.
- P. Miretzky, A. Saralegui, A.F. Cirelli, Simultaneous heavy
metal removal mechanism by dead macrophytes, Chemosphere,
62 (2006) 247–254.
- A. Demirbas, Heavy metal adsorption onto agro-based waste
materials: A review, J. Hazard. Mater., 157 (2008) 220–229.
- M. Roulia, A.A. Vassiliadis, Sorption characterization of a cationic
dye retained by clays and perlite, Microp. Mesop. Mater.,
116 (2008) 732–740.
- G. Vijayakumar, R. Tamilarasan, M. Dharmendirakumar,Adsorption,
kinetic, equilibrium and thermodynamic studies on
the removal of basic dye Rhodamine-B from aqueous solution
by the use of natural adsorbent perlite, J. Mater. Environ. Sci., 3
(2012) 157–170.
- L.K.S. Lima, M.G.C. Silva, M.G.A. Vieira, Study of binary and
single biosorption by the floating aquatic macrophytes Salvinia
natans, Braz. J. Chem. Eng., 33 (2016) 649–660.
- S. Saygideger, O. Gulnaz, E.S. Istifli, N. Yucel, Adsorption of
Cd(II), Cu(II) and Ni(II) ions by Lemna minor L.: Effect of physicochemical
environment, J. Hazard. Mater., 126 (2005) 96–104.
- N. Estrella, D. Mendoza, R. Moreno, D. González, O. Zapata, A.
Martínez, J.M. Santamaría, The Pb-hyperaccumulator aquatic
fern Salvinia minima Baker, responds to Pb2+ by increasing phytochelatins
via changes in SmPCS expression and in phytochelatin
synthase activity, Aquatic Toxicol., 91 (2009) 320–328.
- R. Verma, S. Suthar, Lead and cadmium removal from water
using duckweed-Lemna gibba L.: Impact of pH and initial metal
load, Alexandria Eng. J., 54 (2015) 1297–1304.
- A. Göthberg, M. Greger, K. Holm, B.E. Bengtsson, Influence
of nutrient levels on uptake and effects of mercury, cadmium,
and lead in water spinach, J. Environ. Qual., 33 (2004) 1247–
1255.
- F. Duman, Z. Leblebici, A. Aksoy, Bioaccumulation of nickel,
copper, and cadmium by Spirodela polyrhiza and Lemna gibba, J.
Fresh. Ecol., 24 (2009) 177–179.
- M.A. Maine, N. Suñé, S.C. Lagger, Chromium bioaccumulation:
comparison of the capacity of two floating aquatic macrophytes,
Water Res., 38 (2004) 1494–1501.
- M.V. Casares, L.I. de Cabo, R.S. Seoane, A.F. de Iorio, Copper
removal efficiency in a surface water and compartmentalization
in the floating fern Salvinia minima, Int. J. Environ. Monit.
Anal., 2 (2014) 42–47.