References

  1. H. Ali, E. Khan, M.A. Sajad, Phytoremediation of heavy metals – concepts and applications, Chemosphere, 91 (2013) 869–881.
  2. G. Flora, D. Gupta, A. Tiwari, Toxicity of lead: a review with recent updates, Interdiscip. Toxicol., 5 (2012) 47–58, doi: 10.2478/v10102-012-0009-2.
  3. G. Sánchez-Galván, O. Monroy, J. Gómez, E.J. Olguín, Assessment of the hyperaccumulating lead capacity of Salvinia minima using bioadsorption and intracellular accumulation factors, Water Air Soil Pollut., 194 (2008) 77–90.
  4. K. Kalia, S.J. Flora, Strategies for safe and effective therapeutic measures for chronic arsenic and lead poisoning, J. Occup. Health, 47 (2005) 1–21.
  5. S.H. Abbas, I.M. Ismail, T.M. Mostafa, A.H. Sulaymon, Biosorption of heavy metals: a review, J. Chem. Sci. Technol., 3 (2014) 74–102.
  6. D. Sukumaran, D. Phytoremediation of heavy metals from industrial effluent using constructed wetland technology, Appl. Ecol. Environ. Sci., 1 (2013) 92–97.
  7. M.N.V. Prasad, Phytoremediation of metal-polluted ecosystems: hype for commercialization, Russ. J. Plant Physiol., 50 (2003) 686–700.
  8. P. Sharma, S. Pandey, Status of phytoremediation in world scenario, Int. J. Environ. Biorem. Biodeg., 2 (2014) 178–191.
  9. R. Dixit, E. Wasiullah, D. Malaviya, K. Pandiyan, U.B. Singh, A. Sahu, R. Shukla, B.P. Singh, J.P. Rai, P. Kumar, H. S. and D. Paul, Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes, Sustainability, 7 (2015) 2189–2212.
  10. P.K. Rai, Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach, Int. J. Phytoremediat., 10 (2008) 133–160.
  11. P.K. Rai, Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes, Crit. Rev. Environ. Sci. Technol., 39 (2009) 697–753.
  12. T. Macek, M. Macková, J. Kas, Exploitation of plants for the removal of contaminants in environmental remediation, Biotechnol. Adv., 18 (2000) 23–34.
  13. E.R. De La Sota, Nuevos sinónimos en Salvinia Ség. (Salviniaceae-Pteridophyta), Darwiniana, 33 (1995) 309–313.
  14. E.J. Olguín, G. Sánchez-Galván, T. Pérez-Pérez, A. Pérez-Orozco, Surface adsorption, intracellular accumulation and compartmentalization of lead in batch-operated lagoons with Salvinia minima as affected by environmental conditions, EDTA and nutrients, J. Ind. Microbiol. Biotechnol., 32 (2005) 577–586.
  15. N.K. Lazaridis, D.D. Asouhidou, Kinetics of sorption removal of chromium (VI) from aqueous solutions by calcined Mg-Al-CO3 hydrotalcite, Water Res., 37 (2003) 2875–2882.
  16. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  17. Standard methods for the examination of water and wastewater, American Public Health Association, New York, 1998, 1268 p.
  18. A. Zayed, S. Gowthaman, N. Terry, Phytoaccumulation of trace elements by wetland plants: I. Duckweed, J. Environ. Qual., 27 (1998) 715–721.
  19. B. Dhir, Salvinia: An aquatic fern with potential use in phytoremediation, Environ. We Int. J. Sci. Tech., 4 (2009) 23–27.
  20. W. Tello Zevallos, D.B. Loureiro, M.C. Reeves, F. Yujnovsky, L.M. Salvatierra, L.M. Pérez, Biorremediación de aguas contaminadas con metales pesados empleando macrófitas autóctonas de flotación libre. 4to Simposio Argentino de Procesos Biotecnológicos (SAPROBIO 2016), Buenos Aires, Argentina.
  21. M.A. Maine, M. Duarte, N. Suñé, Cadmium uptake by floating macrophytes, Water Res., 35 (2001) 2629–2634.
  22. S. Mukherjee, S. Kumar, Adsorptive uptake of arsenic (V) from water by aquatic fern Salvinia natans, J. Water Supply Res. T., 54 (2005) 47–53.
  23. N. Suñé, G. Sánchez-Galván, S. Caffaratti, M.A. Maine, Cadmium and chromium removal kinetics from solution by two aquatic macrophytes, Environ. Pol., 145 (2007) 467–473.
  24. D. Kratochvil, B. Volesky, Advances in the biosorption of heavy metals, Trends Biotechnol., 16 (2005) 291–300.
  25. R. Chakraborty, S. Karmakar, S. Mukherjee, S. Kumar, Kinetic evaluation of chromium (VI) sorption by water lettuce (Pistia), Water Sci. Technol., 69 (2014) 195–201.
  26. D. Paliulis, Numerical modeling of kinetics of heavy metal sorption from polluted water, J. Environ. Eng. Landsc., 14 (2006) 10–15.
  27. W. Plazinski, J. Dziuba, W. Rudzinski, Modeling of sorption kinetics: the pseudo-second order equation and the sorbate intraparticle diffusivity, Adsorption, 19 (2013) 1055–1064.
  28. I.A.H. Schneider, J. Rubio, Sorption of heavy metal ions by the non-living biomass of freshwater macrophytes, Environ. Sci. Technol., 33 (1999) 2213–2217.
  29. P. Miretzky, A. Saralegui, A.F. Cirelli, Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina), Chemosphere, 57 (2004) 997–1005.
  30. P. Miretzky, A. Saralegui, A.F. Cirelli, Simultaneous heavy metal removal mechanism by dead macrophytes, Chemosphere, 62 (2006) 247–254.
  31. A. Demirbas, Heavy metal adsorption onto agro-based waste materials: A review, J. Hazard. Mater., 157 (2008) 220–229.
  32. M. Roulia, A.A. Vassiliadis, Sorption characterization of a cationic dye retained by clays and perlite, Microp. Mesop. Mater., 116 (2008) 732–740.
  33. G. Vijayakumar, R. Tamilarasan, M. Dharmendirakumar,Adsorption, kinetic, equilibrium and thermodynamic studies on the removal of basic dye Rhodamine-B from aqueous solution by the use of natural adsorbent perlite, J. Mater. Environ. Sci., 3 (2012) 157–170.
  34. L.K.S. Lima, M.G.C. Silva, M.G.A. Vieira, Study of binary and single biosorption by the floating aquatic macrophytes Salvinia natans, Braz. J. Chem. Eng., 33 (2016) 649–660.
  35. S. Saygideger, O. Gulnaz, E.S. Istifli, N. Yucel, Adsorption of Cd(II), Cu(II) and Ni(II) ions by Lemna minor L.: Effect of physicochemical environment, J. Hazard. Mater., 126 (2005) 96–104.
  36. N. Estrella, D. Mendoza, R. Moreno, D. González, O. Zapata, A. Martínez, J.M. Santamaría, The Pb-hyperaccumulator aquatic fern Salvinia minima Baker, responds to Pb2+ by increasing phytochelatins via changes in SmPCS expression and in phytochelatin synthase activity, Aquatic Toxicol., 91 (2009) 320–328.
  37. R. Verma, S. Suthar, Lead and cadmium removal from water using duckweed-Lemna gibba L.: Impact of pH and initial metal load, Alexandria Eng. J., 54 (2015) 1297–1304.
  38. A. Göthberg, M. Greger, K. Holm, B.E. Bengtsson, Influence of nutrient levels on uptake and effects of mercury, cadmium, and lead in water spinach, J. Environ. Qual., 33 (2004) 1247– 1255.
  39. F. Duman, Z. Leblebici, A. Aksoy, Bioaccumulation of nickel, copper, and cadmium by Spirodela polyrhiza and Lemna gibba, J. Fresh. Ecol., 24 (2009) 177–179.
  40. M.A. Maine, N. Suñé, S.C. Lagger, Chromium bioaccumulation: comparison of the capacity of two floating aquatic macrophytes, Water Res., 38 (2004) 1494–1501.
  41. M.V. Casares, L.I. de Cabo, R.S. Seoane, A.F. de Iorio, Copper removal efficiency in a surface water and compartmentalization in the floating fern Salvinia minima, Int. J. Environ. Monit. Anal., 2 (2014) 42–47.