References

  1. M. Loloi, A. Rezaee, M. Aliofkhazraei, A. SabourRouhaghdam, Electrocatalytic oxidation of phenol from wastewater using Ti/SnO2–Sb2O4 electrode: chemical reaction pathway study, Environ. Sci. Pollut. Res., 23 (2016) 19735–19743.
  2. R.M. Bruce, J. Santodonato, M.W. Neal, Summary review of the health effects associated with phenol, Toxicol. Ind. Health., 3 (1987) 535–568.
  3. E. El-Ashtoukhy, Y. El-Taweel, O. Abdelwahab, E. Nassef, Treatment of petrochemical wastewater containing phenolic compounds by electrocoagulation using a fixed bed electrochemical reactor, Int. J. Electrochem. Sci., 8 (2013) 1534–1550.
  4. D.K. Yadav, A. Joshi, J. Harjit, Determination of phenolic compounds in vegetables by spectrophotometric method, Environments, 16 (2016) 17–22.
  5. T. Senthilvelan, J. Kanagaraj, R.C. Panda, A. Mandal, Biodegradation of phenol by mixed microbial culture: an eco-friendly approach for the pollution reduction, Clean Technol. Environ. Policy., 16 (2014) 113–126.
  6. K.M. Basha, A. Rajendran, V. Thangavelu, Recent advances in the biodegradation of phenol: a review, Asian J. Exp. Biol. Sci., 1 (2012) 219–234.
  7. L. Jiang, Q. Ruan, R. Li, T. Li, Biodegradation of phenol by using free and immobilized cells of Acinetobacter sp. BS8Y, J. Basic Microbiol., 53 (2013) 224–230.
  8. M. Safari, A. Rezaee, B. Ayatiand A. Jonidi-Jafari, Bio-electrochemical reduction of nitrate utilization MWCNT supported on carbon base electrode: A comparison study, J. Taiwan Inst. Chem. Eng., 45 (2014) 2212–2216.
  9. H. Hossini, A. Rezaee, B. Ayati, A. Mahvi, Simultaneous nitrification and denitrification using a polypyrrole/microbial cellulose electrode in a membraneless bio-electrochemical system, RSC Adv., 5 (2015) 72699–72708.
  10. E. Hoseinzadeh, A. Rezaee, M. Farzadkia, Enhanced biological nitrate removal by alternating electric current bioelectrical reactor: Selectivity and mechanism, J. Mol. Liq., 246 (2017) 93–102.
  11. E. Hoseinzadeh, A. Rezaee, M. Farzadkia, Nitrate removal from pharmaceutical wastewater using microbial electrochemical system supplied through low frequency-low voltage alternating electric current, Bioelectrochem, 120 (2018) 49–56.
  12. M. Loloi, A. Rezaee, A. Sabour Roohaghdam, M. Aliofkhazraei, Conductive microbial cellulose as a novel biocathode for Cr (VI)bioreduction, Carbo Polym., 162 (2017) 56–61.
  13. M. Mashkour, M. Rahimnejad, Effect of various carbon-based cathode electrodes on the performance of microbial fuel cell, Biofuel Res J., 2 (2015) 296–300.
  14. M-C. Wei, K-S. Wang, C-L. Huang, C-W. Chiang, T-J. Chang, S-S. Lee, S-H. Chang, Improvement of textile dye removal by electrocoagulation with low-cost steel wool cathode reactor, Chem. Eng. J., 192 (2012) 37–44.
  15. S.-Y. Kang, S.-G. Lee, D.-J. Kim, J. Shin, J. Kim, S. Lee, J.-W. Choi, Comparison of optimization algorithms for modeling of Haldane-type growth kinetics during phenol and benzene degradation, Biochem. Eng. J., 106 (2016) 118–124.
  16. APHA, Standard Methods for the Examination of Water and Wastewater, 20th ed., APHA, Washington, DC, 1995.
  17. Z. Tasic, V. Gupta, M. Antonijevic, The mechanism and kinetics of degradation of phenolics in wastewaters using electrochemical oxidation, Int. J. Electrochem. Sci., 9 (2014) 3473–3490.
  18. I.-H. Yoon, G. Yoo, H.-J. Hong, J. Kim, M.G. Kim, W.-K. Choi, Kinetic study for phenol degradation by ZVI-assisted Fenton reaction and related iron corrosion investigated by X-ray absorption spectroscopy, Chemosphere, 145 (2016) 409–415.
  19. M. Bajaj, C. Gallert, J. Winter, Phenol degradation kinetics of an aerobic mixed culture, Biochem. Eng. J., 46 (2009) 205–209.
  20. T.-Y. Hsien, Y.-H. Lin, Biodegradation of phenolic wastewater in a fixed biofilm reactor, Biochem. Eng. J., 27 (2005) 95–103.
  21. T. Al-Khalid, M.H. El-Naas, Aerobic biodegradation of phenols: a comprehensive review, Crit. Rev. Environ. Sci. Technol., 42 (2012) 1631–1690.
  22. N. Kumar, P. Monga, A. Biswas, D. Das, Modeling and simulation of clean fuel production by Enterobacter cloacae IIT-BT 08, Int. J. Hyd. Energy., 25 (2000) 945–952.
  23. M. Zeyoudi, E. Altenaiji, L.Y. Ozer, I. Ahmed, A.F. Yousef, S.W. Hasan, Impact of continuous and intermittent supply of electric field on the function and microbial community of wastewater treatment electro-bioreactors, Electrochim Acta., 181 (2015) 271–279.
  24. X.-Y. Li, Y.-H. Cui, Y.-J. Feng, Z.-M. Xie, J.-D. Gu, Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes, Water Res., 39 (2005) 1972–1981.
  25. B. Jiang, S. Shi, L. Song, L. Tan, M. Li, J. Liu, Efficient treatment of phenolic wastewater with high salinity using a novel integrated system of magnetically immobilized cells coupling with electrodes, Biores. Technol., 218 (2016) 108–114.
  26. K. Guo, A. Prévoteau, S.A. Patil, K. Rabaey, Engineering electrodes for microbial electrocatalysis, Curr. Opi. Biotechnol., 33 (2015) 149–156.
  27. R.G. Saratale, K.-J. Hwang, J.-Y. Song, G.D. Saratale, D.-S. Kim, Electrochemical oxidation of phenol for wastewater treatment using Ti/PbO2 electrode, J. Environ. Eng., 142 (2015) 64–70.
  28. N. Ailijiang, J. Chang, P. Liang, P. Li, Q. Wu, X. Zhang, Electrical stimulation on biodegradation of phenol and responses of microbial communities in conductive carriers supported biofilms of the bioelectrochemical reactor, Biores. Technol., 201 (2016) 1–7.
  29. T. Wang, H. Zhao, H. Wang, B. Liu, C. Li, Research on degradation product and reaction kinetics of membrane electro-bioreactor (MEBR) with catalytic electrodes for high concentration phenol wastewater treatment, Chemosphere, 155 (2016) 94–99.
  30. N. Singh, C. Balomajumder, Batch growth kinetic studies for elimination of phenol and cyanide using mixed microbial culture, J. Water Process. Eng., 11 (2016) 130–137.
  31. R. Pishgar, G. Najafpour, N. Mousavi, Z. Bakhshi, M. Khorrami, Phenol biodegradation kinetics in the presence of supplimentary substrate, Int. J. Eng., 25 (2012) 181–191.
  32. Z. Bakhshi, G. Najafpour, E. Kariminezhad, R. Pishgar, N. Mousavi, T. Taghizade, Growth kinetic models for phenol biodegradation in a batch culture of Pseudomonas putida, Environ. Technol., 32 (2011) 1835–1841.