References
- M. Nocchi, M. Salleolini, A 3d density-dependent model for
assessment and optimization of water management policy in
a coastal carbonate aquifer exploited for water supply and fish
farming, J. Hydrol., 492 (2013) 200–218.
- J. Sreekanth, B. Datta, Comparative evaluation of genetic programming
and neural network as potential surrogate models
for coastal aquifer management, Water Resour. Manage., 25
(2011) 3201–3218.
- P.C. Nayak, K.P. Sudheer, D.M. Rangan, K.S. Ramasastri, A
neuro-fuzzy computing technique for modeling hydrological
time series, J. Hydrol., 291 (2004) 52–66.
- C.L. Wu, K.W. Chau, Y.S. Li, Predicting monthly streamflow
using data-driven models coupled with data-preprocessing
techniques, Water Resour. Res., 45 (2009) W08432.
- R.K. Bhattacharjya, B. Datta, M.G. Satish, Artificial neural networks
approximation of density dependent saltwater intrusion
process in coastal aquifers, J. Hydrol. Eng.-ASCE, 12 (2007)
273–282.
- R. Bhattacharjya, B. Datta, Optimal management of coastal
aquifers using linked simulation optimization approach,
Water Resour. Manage., 19 (2005) 295–320.
- A. Dhar, B. Datta, Saltwater intrusion management of coastal
aquifers. I: Linked simulation-optimization, J. Hydrol. Eng.-
ASCE, 14 (2009) 1263–1272.
- J. Sreekanth, B. Datta, Coupled simulation-optimization
model for coastal aquifer management using genetic programming-
based ensemble surrogate models and multiple-
realization optimization, Water Resour. Res., 47 (2011)
W04516.
- D.K. Roy, B. Datta, Fuzzy c-mean clustering based inference
system for saltwater intrusion processes prediction in coastal
aquifers, Water Resour. Manage., 31 (2017) 355–376.
- D.K. Roy, B. Datta, Multivariate adaptive regression spline
ensembles for management of multilayered coastal aquifers, J.
Hydrol. Eng., 22 (2017) 04017031.
- D.K. Roy, B. Datta, Saltwater intrusion processes in coastal
aquifers – modelling and management: A review, Desalin.
Water Treat., 78 (2017) 57–89.
- J.-S.R. Jang, C.-T. Sun, E. Mizutani, Neuro-fuzzy and soft computing:
A computational approach to learning and machine
intelligence, Prentice-Hall, Upper Saddle River, New Jersey,
(1997) 614pp.
- M. Sugeno, T. Yasukawa, A fuzzy logic based approach to
qualitative modeling, IEEE Trans. Fuzzy Syst., 1 (1993) 7–31.
- T. Takagi, M. Sugeno, Fuzzy identification of systems and its
application to modeling and control, EEE Trans. Syst., Man,
Cybern., 15 (1985) 116–132.
- M. Sugeno, Industrial applications of fuzzy control, Elsevier
Science Inc., (1985) 269pp.
- J.-S.R. Jang, Anfis: Adaptive-network-based fuzzy inference
systems, EEE Trans. Syst., Man, Cybern., 23 (1993) 665–685.
- S. Ch, S. Mathur, Modeling uncertainty analysis in flow and
solute transport model using adaptive neuro fuzzy inference
system and particle swarm optimization, KSCE J. Civ. Eng., 14
(2010) 941–951.
- S. Emamgholizadeh, K. Moslemi, G. Karami, Prediction the
groundwater level of bastam plain (iran) by artificial neural
network (ann) and adaptive neuro-fuzzy inference system
(anfis) Water Resour. Manage., 28 (2014) 5433–5446.
- M. Khaki, I. Yusoff, N. Islami, Application of the artificial neural
network and neuro-fuzzy system for assessment of groundwater
quality, CLEAN-Soil Air Water, 43 (2015) 551–560.
- Z.B. He, X.H. Wen, H. Liu, J. Du, A comparative study of artificial
neural network, adaptive neuro fuzzy inference system
and support vector machine for forecasting river flow in the
semiarid mountain region, J. Hydrol., 509 (2014) 379–386.
- A. Khashei-Siuki, M. Sarbazi, Evaluation of anfis, ann, and
geostatistical models to spatial distribution of groundwater
quality (case study: Mashhad plain in iran), Arab. J. Geosci., 8
(2015) 903–912.
- M. Sahu, S.S. Mahapatra, H.B. Sahu, R.K. Patel, Prediction
of water quality index using neuro fuzzy inference system,
Water Qual. Expo. Health, 3 (2011) 175–191.
- P.D. Sreekanth, P.D. Sreedevi, S. Ahmed, N. Geethanjali, Comparison
of ffnn and anfis models for estimating groundwater
level, Environ. Earth Sci., 62 (2011) 1301–1310.
- B. Kurtulus, M. Razack, Modeling daily discharge responses
of a large karstic aquifer using soft computing methods: Artificial
neural network and neuro-fuzzy, J. Hydrol., 381 (2010)
101–111.
- B. Tutmez, Z. Hatipoglu, U. Kaymak, Modelling electrical
conductivity of groundwater using an adaptive neuro-fuzzy
inference system, Comput. Geosci., 32 (2006) 421–433.
- D.K. Roy, B. Datta, Optimal management of groundwater
extraction to control saltwater intrusion in multi-layered
coastal aquifers using ensembles of adaptive neuro-fuzzy
inference system, in: World environmental and water
resources congress 2017, 2017.
- J.C. Bezdek, R. Ehrlich, W. Full, Fcm: The fuzzy c-means clustering
algorithm, Comput. Geosci., 10 (1984) 191–203.
- J.R. Koza, Genetic programming as a means for programming
computers by natural selection, Statistics and Computing, 4
(1994) 87–112.
- A. Makkeasorn, N.B. Chang, X. Zhou, Short-term streamflow
forecasting with global climate change implications - a comparative
study between genetic programming and neural network
models, J. Hydrol., 352 (2008) 336–354.
- K. Parasuraman, A. Elshorbagy, Toward improving the reliability
of hydrologic prediction: Model structure uncertainty
and its quantification using ensemble-based genetic programming
framework, Water Resour. Res., 44 (2008).
- W.C. Wang, K.W. Chau, C.T. Cheng, L. Qiu, A comparison of
performance of several artificial intelligence methods for forecasting
monthly discharge time series, J. Hydrol., 374 (2009)
294–306.
- J. Sreekanth, B. Datta, Multi-objective management of saltwater
intrusion in coastal aquifers using genetic programming
and modular neural network based surrogate models, J.
Hydrol., 393 (2010) 245–256.
- V. Babovic, M. Keijzer, Rainfall runoff modelling based on
genetic programming, Nord. Hydrol., 33 (2002) 331–346.
- P.A. Whigham, P.F. Crapper, Modelling rainfall-runoff using
genetic programming, Math. Comput. Model., 33 (2001) 707–721.
- S. Gaur, M.C. Deo, Real-time wave forecasting using genetic
programming, Ocean Engineering, 35 (2008) 1166–1172.
- K. Deb, T. Goel, Controlled elitist non-dominated sorting
genetic algorithms for better convergence, in: E. Zitzler, L.
Thiele, K. Deb, C.A. Coello Coello, D. Corne (Eds.) Evolutionary
multi-criterion optimization: First international conference,
emo 2001 zurich, switzerland, march 7–9, 2001 proceedings,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2001, pp. 67–81.
- H.J. Lin, D.R. Rechards, C.A. Talbot, G.T. Yeh, J.R. Cheng,
H.P. Cheng, N.L. Jones, A three-dimensional finite-element
computer model for simulating density-dependent flow and
transport in variable saturated media: Version 3.0, U. S. Army
Engineering Research and Development Center, Vicksburg,
Miss, (1997) 143pp.
- E.J. Pebesma, G.B.M. Heuvelink, Latin hypercube sampling of
gaussian random fields, Technometrics, 41 (1999) 303–312.
- S.L. Chiu, Fuzzy model identification based on cluster estimation,
J. Inteli. Fuzzy Syst., 2 (1994) 267–278.
- F.D. Francone, Discipulus™ software owner’s manual, version
3.0 draft, Machine LearningTechnologies Inc, Littleton, CO,
USA, 1998, 252 pp.
- A. Perendeci, S. Arslan, A. Tanyolac, S.S. Celebi, Evaluation
of input variables in adaptive-network-based fuzzy inference
system modeling for an anaerobic wastewater treatment plant
under unsteady state, J. Environ. Eng. Asce, 133 (2007) 765–771.
- K. Mohammadi, S. Shamshirband, D. Petković, P.L. Yee, Z.
Mansor, Using anfis for selection of more relevant parameters
to predict dew point temperature, Appl. Therm. Eng., 96 (2016)
311–319.
- MathWorks, Matlab version r2016b, The Mathworks Inc., Mathworks,
Natick, 2016.
- C. Shu, T.B.M.J. Ouarda, Regional flood frequency analysis at
ungauged sites using the adaptive neuro-fuzzy inference system,
J. Hydrol., 349 (2008) 31–43.
- R. Hashim, C. Roy, S. Motamedi, S. Shamshirband, D. Petkovic,
M. Gocic, S.C. Lee, Selection of meteorological parameters
affecting rainfall estimation using neuro-fuzzy computing
methodology, Atmos. Res., 171 (2016) 21–30.
- J. Shiri, Ö. Kişi, Comparison of genetic programming with
neuro-fuzzy systems for predicting short-term water table
depth fluctuations, Comput. Geosci., 37 (2011) 1692–1701.