References

  1. M. Nocchi, M. Salleolini, A 3d density-dependent model for assessment and optimization of water management policy in a coastal carbonate aquifer exploited for water supply and fish farming, J. Hydrol., 492 (2013) 200–218.
  2. J. Sreekanth, B. Datta, Comparative evaluation of genetic programming and neural network as potential surrogate models for coastal aquifer management, Water Resour. Manage., 25 (2011) 3201–3218.
  3. P.C. Nayak, K.P. Sudheer, D.M. Rangan, K.S. Ramasastri, A neuro-fuzzy computing technique for modeling hydrological time series, J. Hydrol., 291 (2004) 52–66.
  4. C.L. Wu, K.W. Chau, Y.S. Li, Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques, Water Resour. Res., 45 (2009) W08432.
  5. R.K. Bhattacharjya, B. Datta, M.G. Satish, Artificial neural networks approximation of density dependent saltwater intrusion process in coastal aquifers, J. Hydrol. Eng.-ASCE, 12 (2007) 273–282.
  6. R. Bhattacharjya, B. Datta, Optimal management of coastal aquifers using linked simulation optimization approach, Water Resour. Manage., 19 (2005) 295–320.
  7. A. Dhar, B. Datta, Saltwater intrusion management of coastal aquifers. I: Linked simulation-optimization, J. Hydrol. Eng.- ASCE, 14 (2009) 1263–1272.
  8. J. Sreekanth, B. Datta, Coupled simulation-optimization model for coastal aquifer management using genetic programming- based ensemble surrogate models and multiple- realization optimization, Water Resour. Res., 47 (2011) W04516.
  9. D.K. Roy, B. Datta, Fuzzy c-mean clustering based inference system for saltwater intrusion processes prediction in coastal aquifers, Water Resour. Manage., 31 (2017) 355–376.
  10. D.K. Roy, B. Datta, Multivariate adaptive regression spline ensembles for management of multilayered coastal aquifers, J. Hydrol. Eng., 22 (2017) 04017031.
  11. D.K. Roy, B. Datta, Saltwater intrusion processes in coastal aquifers – modelling and management: A review, Desalin. Water Treat., 78 (2017) 57–89.
  12. J.-S.R. Jang, C.-T. Sun, E. Mizutani, Neuro-fuzzy and soft computing: A computational approach to learning and machine intelligence, Prentice-Hall, Upper Saddle River, New Jersey, (1997) 614pp.
  13. M. Sugeno, T. Yasukawa, A fuzzy logic based approach to qualitative modeling, IEEE Trans. Fuzzy Syst., 1 (1993) 7–31.
  14. T. Takagi, M. Sugeno, Fuzzy identification of systems and its application to modeling and control, EEE Trans. Syst., Man, Cybern., 15 (1985) 116–132.
  15. M. Sugeno, Industrial applications of fuzzy control, Elsevier Science Inc., (1985) 269pp.
  16. J.-S.R. Jang, Anfis: Adaptive-network-based fuzzy inference systems, EEE Trans. Syst., Man, Cybern., 23 (1993) 665–685.
  17. S. Ch, S. Mathur, Modeling uncertainty analysis in flow and solute transport model using adaptive neuro fuzzy inference system and particle swarm optimization, KSCE J. Civ. Eng., 14 (2010) 941–951.
  18. S. Emamgholizadeh, K. Moslemi, G. Karami, Prediction the groundwater level of bastam plain (iran) by artificial neural network (ann) and adaptive neuro-fuzzy inference system (anfis) Water Resour. Manage., 28 (2014) 5433–5446.
  19. M. Khaki, I. Yusoff, N. Islami, Application of the artificial neural network and neuro-fuzzy system for assessment of groundwater quality, CLEAN-Soil Air Water, 43 (2015) 551–560.
  20. Z.B. He, X.H. Wen, H. Liu, J. Du, A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region, J. Hydrol., 509 (2014) 379–386.
  21. A. Khashei-Siuki, M. Sarbazi, Evaluation of anfis, ann, and geostatistical models to spatial distribution of groundwater quality (case study: Mashhad plain in iran), Arab. J. Geosci., 8 (2015) 903–912.
  22. M. Sahu, S.S. Mahapatra, H.B. Sahu, R.K. Patel, Prediction of water quality index using neuro fuzzy inference system, Water Qual. Expo. Health, 3 (2011) 175–191.
  23. P.D. Sreekanth, P.D. Sreedevi, S. Ahmed, N. Geethanjali, Comparison of ffnn and anfis models for estimating groundwater level, Environ. Earth Sci., 62 (2011) 1301–1310.
  24. B. Kurtulus, M. Razack, Modeling daily discharge responses of a large karstic aquifer using soft computing methods: Artificial neural network and neuro-fuzzy, J. Hydrol., 381 (2010) 101–111.
  25. B. Tutmez, Z. Hatipoglu, U. Kaymak, Modelling electrical conductivity of groundwater using an adaptive neuro-fuzzy inference system, Comput. Geosci., 32 (2006) 421–433.
  26. D.K. Roy, B. Datta, Optimal management of groundwater extraction to control saltwater intrusion in multi-layered coastal aquifers using ensembles of adaptive neuro-fuzzy inference system, in: World environmental and water resources congress 2017, 2017.
  27. J.C. Bezdek, R. Ehrlich, W. Full, Fcm: The fuzzy c-means clustering algorithm, Comput. Geosci., 10 (1984) 191–203.
  28. J.R. Koza, Genetic programming as a means for programming computers by natural selection, Statistics and Computing, 4 (1994) 87–112.
  29. A. Makkeasorn, N.B. Chang, X. Zhou, Short-term streamflow forecasting with global climate change implications - a comparative study between genetic programming and neural network models, J. Hydrol., 352 (2008) 336–354.
  30. K. Parasuraman, A. Elshorbagy, Toward improving the reliability of hydrologic prediction: Model structure uncertainty and its quantification using ensemble-based genetic programming framework, Water Resour. Res., 44 (2008).
  31. W.C. Wang, K.W. Chau, C.T. Cheng, L. Qiu, A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series, J. Hydrol., 374 (2009) 294–306.
  32. J. Sreekanth, B. Datta, Multi-objective management of saltwater intrusion in coastal aquifers using genetic programming and modular neural network based surrogate models, J. Hydrol., 393 (2010) 245–256.
  33. V. Babovic, M. Keijzer, Rainfall runoff modelling based on genetic programming, Nord. Hydrol., 33 (2002) 331–346.
  34. P.A. Whigham, P.F. Crapper, Modelling rainfall-runoff using genetic programming, Math. Comput. Model., 33 (2001) 707–721.
  35. S. Gaur, M.C. Deo, Real-time wave forecasting using genetic programming, Ocean Engineering, 35 (2008) 1166–1172.
  36. K. Deb, T. Goel, Controlled elitist non-dominated sorting genetic algorithms for better convergence, in: E. Zitzler, L. Thiele, K. Deb, C.A. Coello Coello, D. Corne (Eds.) Evolutionary multi-criterion optimization: First international conference, emo 2001 zurich, switzerland, march 7–9, 2001 proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, 2001, pp. 67–81.
  37. H.J. Lin, D.R. Rechards, C.A. Talbot, G.T. Yeh, J.R. Cheng, H.P. Cheng, N.L. Jones, A three-dimensional finite-element computer model for simulating density-dependent flow and transport in variable saturated media: Version 3.0, U. S. Army Engineering Research and Development Center, Vicksburg, Miss, (1997) 143pp.
  38. E.J. Pebesma, G.B.M. Heuvelink, Latin hypercube sampling of gaussian random fields, Technometrics, 41 (1999) 303–312.
  39. S.L. Chiu, Fuzzy model identification based on cluster estimation, J. Inteli. Fuzzy Syst., 2 (1994) 267–278.
  40. F.D. Francone, Discipulus™ software owner’s manual, version 3.0 draft, Machine LearningTechnologies Inc, Littleton, CO, USA, 1998, 252 pp.
  41. A. Perendeci, S. Arslan, A. Tanyolac, S.S. Celebi, Evaluation of input variables in adaptive-network-based fuzzy inference system modeling for an anaerobic wastewater treatment plant under unsteady state, J. Environ. Eng. Asce, 133 (2007) 765–771.
  42. K. Mohammadi, S. Shamshirband, D. Petković, P.L. Yee, Z. Mansor, Using anfis for selection of more relevant parameters to predict dew point temperature, Appl. Therm. Eng., 96 (2016) 311–319.
  43. MathWorks, Matlab version r2016b, The Mathworks Inc., Mathworks, Natick, 2016.
  44. C. Shu, T.B.M.J. Ouarda, Regional flood frequency analysis at ungauged sites using the adaptive neuro-fuzzy inference system, J. Hydrol., 349 (2008) 31–43.
  45. R. Hashim, C. Roy, S. Motamedi, S. Shamshirband, D. Petkovic, M. Gocic, S.C. Lee, Selection of meteorological parameters affecting rainfall estimation using neuro-fuzzy computing methodology, Atmos. Res., 171 (2016) 21–30.
  46. J. Shiri, Ö. Kişi, Comparison of genetic programming with neuro-fuzzy systems for predicting short-term water table depth fluctuations, Comput. Geosci., 37 (2011) 1692–1701.