References

  1. D.B. Wang, W. Zheng, X.M. Li, Q. Yang, D.X. Liao, G.M. Zeng, Evaluation of the feasibility of alcohols serving as external carbon sources for biological phosphorus removal induced by the oxic/extended-idle regime, Biotechnol. Bioeng., 110 (2013) 827–837.
  2. J.W. Zhao, D.B. Wang, X.M. Li, G.M. Zeng, Q. Yang, Improved biological phosphorus removal induced by an oxic/extended- idle process using glycerol and acetate at equal fractions, RSC Adv., 6 (2016) 86165–86173.
  3. J. Tong, Y.G. Chen, Enhanced biological phosphorus removal driven by short-chain fatty acids produced from waste activated sludge alkaline fermentation, Environ. Sci. Technol., 41 (2007) 7126–7130.
  4. H.B. Chen, Y,W. Liu, B.J. Ni, Q.L. Wang, D.B. Wang, C. Zhang, X.M. Li, G.M Zeng, Full-scale evaluation of aerobic/extended-idle regime inducing biological phosphorus removal and its integration with intermittent sand filter to treat domestic sewage discharged from highway rest area, Biochem. Eng. J., 113 (2016) 114–122
  5. Y. Comeau, K.J. Hall, R.E.W. Hancock, W.K. Oldham, Biochemical model for enhanced biological phosphorus removal, Water Res., 20 (1986) 1511–1521.
  6. S.H. Chuang, C.F. Quyang, Y.B. Wang, Kinetic competition between phosphorus release and denitrification on sludge under anoxic condition, Water Res., 30 (1996) 3961–3968.
  7. J. Guerrero, A. Guisasola, J.A. Baeza, The nature of the carbon source rules the competition between PAO and denitrifiers in systems for simultaneous biological nitrogen and phosphorus removal, Water Res., 45 (2011) 4793–4802.
  8. Z.X. Peng, Y.Z. Peng, L.J. Gui, X.L. Liu, Competition for single carbon source between denitrification and phosphorus release in sludge under anoxic condition, Chinese J. Chem. Eng., 18 (2010) 472–477.
  9. M. Zubrowska-Sudol, J. Walczak, Effects of mechanical disintegration of activated sludge on the activity of nitrifying and denitrifying bacteria and phosphorus accumulating organisms, Water Res., 61 (2014) 200–209.
  10. M. Carvalheira, A. Oehmen, G. Carvalho, M.A.M. Reis, The effect of substrate competition on the metabolism of polyphosphate accumulating organisms (PAOs), Water Res., 64 (2014) 149–159.
  11. A. Oehmen, Z. Yuan, L.L. Blackall, J. Keller, Comparison of acetate and propionate uptake by polyphosphate accumulating organisms and glycogen accumulating organisms, Biotechnol. Bioeng., 91 (2005) 162–168.
  12. L. Wu, Y.Z. Peng, S.Y. Wang, X. Liu, L.Y. Li, Effects of anoxic condition on release of phosphorus in an enhanced system for phosphorus removal with granular sludge, CIESC J., 62 (2011) 2608–2614.
  13. L.M. Whang, C.D.M. Filipec, J.K. Park, Model-based evaluation of competition between polyphosphate- and glycogen-accumulating organisms, Water Res., 41 (2007) 1312–1324.
  14. N. Yagci, G. Insel, N. Artan, D. Orhon, Modelling and calibration of phosphate and glycogen accumulating organism competition for acetate uptake in a sequencing batch reactor, Water Sci. Technol., 50 (2004) 241–250.
  15. Y. Zhang, S.B. Xia, D.D. Kou, D. Xu, L.W Kong, F. He, Z.B. Wu, Phosphorus removal from domestic sewage by adsorption combined photocatalytic reduction with red mud, Desal. Water Treat., 51 (2013) 7130–7136.
  16. J.B. Copp, P.L. Dold, Confirming the nitrate-to-oxygen conversion factor for denitrification, Water Res., 32 (1998) 1296– 1304.
  17. L.X. Liu, B.P. Zhang, X.H. Wu, G. Yan, X.J. Lu, Simultaneous removal of nitrogen and phosphorous from municipal wastewater using continuous-flow integrated biological reactor, J. Environ. Eng.-ASCE, 134 (2008) 169–176.
  18. Z.X. Zhong, X. Lan, X.H. Ding, X.J Lu, B.P. Zhang, Performance and bacterial community analysis of continuous-inflow integrated biological reactor (CIBR) treating simulated domestic wastewater, J. Wuhan Univ. Sci. Technol., 39 (2016) 328–334 (in Chinese).
  19. APHA (American Public Health Association), Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association, Washington, DC,1998.
  20. X.X. Wang, S.Y. Wang, T.L. Xue, B.K. Li, X. Dai, Y.Z. Peng, Treating low carbon/nitrogen (C/N) wastewater in simultaneous nitrification-endogenous denitrification and phosphorous removal (SNDPR) systems by strengthening anaerobic intracellular carbon storage, Water Res., 77 (2015) 191–200.
  21. M.K.H. Winkler, J.P. Bassin, R. Kleerebezem, L.M.M. de Bruin, T.P.H. Van den Brand, M.C.M. Van Loosdrecht, Selective sludge removal in a segregated aerobic granular biomass system as a strategy to control PAO-GAO competition at high temperatures, Water Res., 45 (2011) 3291–3299.
  22. T.X. He, Z.L. Li, Q. Sun, Y. Xu, Q. Ye, Heterotrophic nitrification and aerobic denitrification by Pseudomonas tolaasii Y-11 without nitrite accumulation during nitrogen conversion, Bioresour. Technol., 200 (2016) 493–499.
  23. D.B. Wang, Q.L. Wang, A. Laloo, Y.F. Xu, P.L. Bond, Z.G. Yuan, Achieving stable nitritation for mainstream deammonification by combining free nitrous acid-Based sludge treatment and oxygen limitation, Scient. Reports, 6 (2016) 25547 1–10.
  24. V. Mateju, S. Cizinska, J. Krejci, T. Janoch, Biological water denitrification-a review, Enzyme Microb. Technol., 14 (1992) 170–183.
  25. O. Soto, E. Aspé, M. Roeckel, Kinetics of cross-inhibited denitrification of a high load wastewater, Enzyme Microb. Technol., 40 (2007) 1627–1634
  26. T. Kuba, A. Wachtmeister, M.C.M. Van Loosdrecht, J.J. Heijnen, Effect of nitrate on phosphorus release in biological phosphorus removal systems, Water Sci. Technol., 30 (2014) 263–269.
  27. E.W.J. Van Niel, K.J. Appeldoorn, A.J.B. Zehnder, G.J.J. Kortstee, Inhibition of anaerobic phosphate release by nitric oxide in activated sludge, Appl. Environ. Microbiol., 64 (1998) 2925–2930.
  28. T. Saito, D. Brdjanovic, M.C.M. Van Loosdrecht, Effect of nitrite on phosphate uptake by phosphate accumulating organisms, Water Res., 38 (2004) 3760–3768.
  29. A.E. Tugtas, U. Tezel, S.G. Pavlostathis, A comprehensive model of simultaneous denitrification and methanogenic fermentation processes, Biotechnol. Bioeng., 105 (2010) 98–108.
  30. A. Ribera-Guardia, E. Kassotaki, O. Gutierrez, M. Pijuan, Effect of carbon source and competition for electronson nitrous oxide reduction in a mixed denitrifying microbial community, Process Biochem., 49 (2014) 2228–2234.
  31. C.M. Lopez-Vazquez, A. Oehmen, C.M. Hooijmans, D. Brdjanovic, H.J. Gijzen, Z. Yuan, M.C.M. van Loosdrecht,. Modeling the PAO-GAO competition: effects of carbon source, pH and temperature, Water Res., 43(2009) 450–462.
  32. E. Murnleitner, M.C.M. van Loosdrecht, J.J. Heijnen, An integrated metabolic model for the aerobic and denitrifying biological phosphorus removal, Biotechnol. Bioeng., 54 (1997) 434–450.
  33. G.J.F. Smolders, J. van der Meij, M.C.M. van Loosdrecht, J.J. Heijnen, A structured metabolic model for anaerobic and aerobic stoichiometry and kinetics of the biological phosphorus removal process, Biotechnol. Bioeng., 47 (1995) 277–287.
  34. Y.T. Pan, J.B. Ni, H.J. Lu, K. Chandran, D. Richardson, Z.G. Yuan, Evaluating two concepts for the modelling of intermediates accumulation during biological denitrification in wastewater treatment, Water Res., 71 (2015) 21–31.
  35. Y.B. Tang, Q.J. Xu, Y.L. Min, Effect of intracellular carbon resource on competition between PAOs and GAOs for enhanced biological phosphorus removal , Adv. Mater. Res., (2014) 1073–1076, 1007–1010.
  36. Y.H. Ong, A.S.M. Chua, T. Fukushima, G.C. Ngoh, T. Shoji, A. Michinaka, High-temperature EBPR process: The performance, analysis of PAOs and GAOs and the fine-scale population study of Candidatus “Accumulibacter phosphatis”, Water Res., 6 (2014) 102–112.
  37. G. Smolders, J. Van der Meij, M. Van Loosdrecht, Model of the anaerobic metabolism of the biological phos-phorus removal process: Stoichiometry and pH influence, Biotechnol. Bioeng., 43 (1994) 461–470
  38. C.M. Lopez-Vazquez, C.M. Hooijmans, D. Brdjanovic, H.J. Gijzen, M.C.M. van Loosdrecht, Temperature effects on glycogen accumulating organisms, Water Res., 43 (2009) 2852– 2864.
  39. C.M. Lopez-Velazquez, C.M. Hooijmans, D. Brdjanovic, H.J. Gijzen, M.C.M. van Loosdrecht, Factors affecting the microbial populations at full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants in The Netherlands, Water Res., 42 (2008) 2349–2360.