References

  1. P. Bucheli, M.H. Taniwaki, Research on the origin, and on the impact of post-harvest handling and manufacturing on the presence of ochra toxin A in coffee, Food Addit. Contam., 19 (2002) 655–665.
  2. O.L. Shotwell, C.W. Hesseltine, M.L. Goulden, Ochra toxin A: Occurrence as natural contaminant of a corn sample, Appl. Micro biol., 17 (1969) 765–766.
  3. G.H.D. Van der Stegen, P.J.M. Essens, J. Van der Lijn, Effect of roasting conditions on reduction of ochra toxin A in coffee, J. Agric. Food Chem., 49 (2001) 4713–4715.
  4. J. Varga, K. Rigo, B. Toth, J. Teren, Z. Kozakiewicz, Evolutionary relationships among Aspergillus species producing economically important myco toxins, Food Tech. Biotech., 11 (2003) 29–36.
  5. A. Medina, M. Jimenez, R. Mateo, N. Magan, Efficacy of natamycin for control of growth and ochra toxin A production by Aspergillus carbonarius strains under different environmental conditions, J. Appl. Microbiol., 103 (2007) 2234–2239.
  6. X.Q. Chen, K.F. Lam, S.F. Mak, K.L Yeung, Precious metal recovery by selective adsorption using biosorbents, J. Hazard. Mater., 186 (2011) 902–910.
  7. A. Gunay, E. Arslankaya, I. Tosun, Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics, J. Hazard. Mater., 146 (2007) 362–371.
  8. M. Zahoor, F.A. Khan, Adsorption of aflatoxin B1 by magnetic carbon nanocomposite prepared from bagasse, Arabian J. Chem., (2014).
  9. S.A. Kahani, M. Hamadanian, O. Vandadi, Deposition of magnetite nanoparticles in activated carbons and preparation of magnetic activated carbons. Nano technology and its applications, First Sharjah International Conference, American Institute of Physics, 2007.
  10. J. Stroka, E. Ankalam, U. Jorissen, J. Gilbert, Immuno-affinity column cleanup with liquid chromatography using post-column bromination for determination of aflatoxins in peanut butter, pistachio paste, fig past, paprika powder. Collaborative study, J. Assoc. Anal. Chem. Int., 83 (2000) 320–340.
  11. F. Zhang, K.X. Wang, G.D. Li, J.S. Chen, Hierarchical porous carbon derived from rice straw for lithium ion batteries with high-rate performance, Electro. Chem. Commun., 11(1) (2009) 130–133.
  12. F.A. Khan, M. Zahoor, In vivo detoxification of aflatoxin B1 by magnetic carbon nanostructures prepared from bagasse, BMC Vet. Res., 10 (2014) 255.
  13. M.M.U.R. Khattak, M. Zahoor, B. Muhammad, Removal of heavy metals from water by carbon nanocomposites prepared from melon wastes, Desal. Water Treat., 75 (2017) 158–173.
  14. D. Prahas, Y. Kartika, N. Indraswati, S. Ismadji, Activated carbon from jack fruit peel waste by H3PO4 chemical activation: Pore structure and surface chemistry characterization, Chem. Eng. J., 140 (2008) 32–42.
  15. L. Li, P.A. Quinlivan, D.R.U. Knappe, Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution, Carbon, 40 (2002) 2085–2100.
  16. C. Jorge, H. Rios, E.M. Muzquiz, A. Zugasti, D.A. Cortes-Hern, Mechano synthesis as a simple method to obtain a magnetic composite (activated carbon/Fe3O4) form hyper thermia treatment, J. Bio. Nanomater., 7 (2016) 19–28.
  17. S. Krehula, S. Music, Formation of magnetite in highly alkaline media in the presence of small amounts of ruthenium, Croatia Chem. Acta., 80 (2007) 517–527.
  18. X. Liu, M. Kim, Solvothermal synthesis and magnetic properties of magnetic Nanoplatelets, Matt. Lett., 63 (2009) 428–430.
  19. Q. Hengfei, H. Yongkui, L. Siyu, F. Yao, L. Xi, K, Shifei, Synthesis and properties of magnetic carbon nanocages particles for dye removal, J. Nanomater., 2015 (2015) 1–8.
  20. N.R. Wan, I.M. Wan, A.Y. Mohd, Highly porous carbon materials from biomass by chemical and carbonization method: a comparison study, J. Chem., 46 (2013) 1–6.
  21. Z. Al-Qodah1, R. Shawabkah, Production and characterization of granular activated sludge, Brazilian J. Chem. Eng., 26 (2009) 127–136.
  22. H. Deng, L. Yang, G. Tao, J. Dai, Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation, application in methylene blue adsorption from aqueous solution, J. Hazard. Mater., 166 (2009) 1514–1521.
  23. C. Yanyan, Z. Caineng, M. Maria, H. Suyun, G. Carley, T. Xiaowan, Application of micro-fourier transform infrared spectroscopy (FTIR) in the geological sciences, Int. J. Mol. Sci., 16 (2015) 3023–3025.
  24. P. Hadi, M. Xu, C.N. Ki, C.S. Lin, G. McKay, A critical review on preparation, characterization and utilization of sludge-derived activated carbons for wastewater treatment, Chem. Eng. J., 260 (2015) 895–906.
  25. M. Sneha, N.M. Sundaram, Preparation and characterization of an iron oxide-hydroxyapatite nanocomposite for potential bone cancer therapy, Int. J. Nanomater., 10 (2015) 99–106.
  26. H. Giles, T.H. Macewan, S.N. Nakhwa, D. Smith, Studies in adsorption. Part IX. A system of classification of solution adsorption isotherms and its use in diagnosis of adsorption mechanism and its measurement of specific surface areas of solids, J. Sol. Com., 30 (1960) 3973–3993.
  27. I. Langmuir, The adsorption of gases on plane surfaces of glass mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  28. H. Freundlich, Über die adsorption in lösungen (Adsorption in solution), Z. Phys. Chem., 57 (1906) 384–470.
  29. G.H. Wang, C.Y. Xue, F. Chen, Y.L. Ma, X.B. Zhang, Y.Z. Bi, Y.C Cao, Effects of combinations of ochratoxin A and T-2 toxin on immune function of yellow-feathered broiler chickens, Poult. Sci., 88 (2009) 504–510.
  30. S. Lagergren, Zur theorie der sogenannten adsorption geloester stoffe, K. Sven. Vetensk. akad. Handl., 24 (1898) 1–39.
  31. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Chem. Eng. J., 70 (1999) 115–124.