References
- W. Tang, B. Shan, H. Zhang, W. Zhang, Y. Zhao, Y. Ding, N.
Rong, X. Zhu, Heavy metal contamination in the surface sediments
of representative limnetic ecosystems in eastern China,
Sci. Rep., 4 (2014) 7152–7161.
- B. Mansouri, R. Baramaki, M. Ebrahimpour, Acute toxicity
bioassay of mercury and silver on Capoeta fusca, Toxicol. Ind.
Health., 28 (2012) 393–398.
- E. Hoshyari, A. Pourkhabbaz, B. Mansouri, Contaminations of
metal in tissues of Siberian gull (Larus heuglini): gender, age,
and tissue differences, Bull. Environ. Contamin. Toxicol., 89
(2012) 102–106.
- P. Swain, S.K. Nayak, A. Sasmal, T. Behera, S.K. Barik, S.K.
Swain, S.S. Mishra, A.K. Sen, J.K. Das, P. Jayasankar, Antimicrobial
activity of metal based nanoparticles against microbes
associated with diseases in aquaculture, World. J. Microbiol.
Biotechnol., 30 (2014) 2491–2502.
- L. Peng, F. Xinbin, Y. Qiongzhi, G, Xuefei, X. Jialin, W. Minghung,
C. Peter, W. Sheng-Chun, The effects of aquaculture on
mercury distribution, changing speciation, and bioaccumulation
in a reservoir ecosystem, Environ. Sci. Pollut. Res., 24
(2017) 25923–25932.
- L. Peng, G. Xuefei, Y. Qiongzhi, Z. Jin, C. Yucheng, Z. Chan, W.
Ming-Hung, W. Sheng-Chun, Role of mariculture in the loading
and speciation of mercury at the coast of the East China,
Sea. Environ. Pollut., 218 (2016) 1037–1044.
- M. Ebrahimpour, M. Mosavisefat, R. Mohabbati, Acute toxicity
bioassay of mercuric chloride: An alien fish from a river, Toxicol.
Environ. Chem., 92 (2010) 169–173.
- L.R. Skubal, N.K. Meshkov, Reduction and removal of mercury
from water using arginine-modified TiO2, J. Photochem. Photobiol.
A: Chem., 148 (2002) 211–14.
- Q.F. Zhang, Y.W. Li, Z.H. Liu, Q.L. Chen, Exposure to mercuric
chloride induces developmental damage, oxidative stress and
immunotoxicity in zebra fish embryos-larvae, Aquat. Toxicol.,
181 (2016) 76–85.
- Q.F. Zhang, Y.W. Li, Z.H. Liu, Q.L. Chen, Reproductive toxicity
of inorganic mercury exposure in adult zebra fish: Histological
damage, oxidative stress, and alterations of sex hormone and
gene expression in the hypothalamic-pituitary-gonadal axis,
Aquat. Toxicol., 177 (2016) 417–424.
- S. Chernousova, M. Epple, Silver as antibacterial agent: Ion,
nanoparticle, and metal, Angew. Chem. Int. Ed., 52 (2013)
1636–1653.
- C.Y. Li, Y.J. Zhang, M. Wang, Y. Zhang, G. Chen, L. Li, D. Wu,
Q. Wang, In vivo real-time visualization of tissue blood flow
and angio genesis using Ag2S quantum dots in the NIR-II window,
Biomaterials, 35 (2014) 393–400.
- I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial
agent: A case study on E. coli as a model for gram-negative
bacteria, J. Colloid. Interface. Sci., 275 (2004) 177–182.
- H.S. Jiang, L. Yin, N.N. Ren, L. Xian, S. Zhao, W.L.B. Gontero,
The effects of chronic silver nanoparticles on aquatic system in
microcosms, Environ. Pollut., 223 (2017) 395–402.
- C. Lorenz, L. Windler, N. von Goetz, R.P. Lehmann, M. Schuppler,
K. Hungerbuhler, M. Heuberger, B. Nowack, Characterization
of silver release from commercially available functional
(nano) textiles, Chemosphere, 89 (2012) 817–824.
- T. Kunniger, A.C. Gerecke, A. Ulrich, A. Huch, R. Vonbank,
M. Heeb, A. Wichser, R. Haag, P. Kunz, M. Faller, Release and
environmental impact of silver nanoparticles and conventional
organic biocides from coated wooden facades, Environ.
Pollut., 184 (2014) 464–471.
- D.K. Tripathi, A. Tripathi, S. Singh, Y. Singh, K. Vishwakarma,
G. Yadav, S. Sharma, V.K. Singh, R.K. Mishra, R.G. Upadhyay,
N.K. Dubey, Y. Lee, D.K. Chauhan, Uptake, accumulation and
toxicity of silver nanoparticle in autotrophic plants, and heterotrophic
microbes: a concentric review, Front. Microbiol., 8
(2017) 1–16.
- J.H. Kim, J.S. Lee, J.C. Kan, Effect of inorganic mercury on
hematological and antioxidant parameters on olive flounder
Paralichthys olivaceus, Fish. Aquat. Sci., 15 (2012) 215–220.
- T. Cappello, P. Pereira, M. Maisano, A. Mauceri, M. Pacheco,
S. Fasulo, Advances in understanding the mechanisms of
mercury toxicity in wild golden grey mullet (Liza aurata)
by 1H NMR-based metabolomics, Environ. Pollut., 219 (2016)
139–148.
- G. Laban, L.F. Nies, R.F. Turco, J.W. Bickham, M.S. Sepulveda,
The effects of silver nanoparticles on fathead minnow (Pimephales
promelas) embryos, Ecotoxicol., 19 (2010) 185–195.
- L. Murray, M.D. Rennie, E.C. Enders, K. Pleskach, J.D. Martin,
Effect of nanosilver on cortisol release and morphometrics in
rainbow trout (Oncorhynchus mykiss), Environ. Toxicol. Chem.,
36 (2015) 1606–1613.
- I. Kim, B.T. Lee, H.A. Kim, K.W. Kim, S.D. Kim, Y.S. Hwang,
Citrate coated silver nanoparticles change heavy metal toxicities
and bio accumulation of Daphnia magna, Chemosphere, 143
(2016) 99–105.
- F.F. Cruz, C.E. Leite, T.C. Pereira, M.R. Bogo, C.D. Bonan,
A.M. Battastini, M.M. Campos, F.B. Morrone, Assessment
of mercury chloride-induced toxicity and the relevance of
P2X7 receptor activation in zebra fish larvae, Comp. Biochem.
Physiol. Part C, 158 (2013) 159–164.
- S. Abarghoei, A. Hedayati, R. Ghorbani, H.K. Miandareh, T.
Bagheri, Histopathological effects of waterborne silver nanoparticles
and silver salt on the gills and liver of gold fish Carassius
auratus, Int. J. Environ. Sci. Technol., 13 (2016) 1753–1760.
- A. Kumar, B. Sharma, R.S. Pandey, Preliminary evaluation
of the acute toxicity of cypermethrin and k-Cyhalothrin to
Channa punctatus, Bull. Environ. Contamin. Toxicol., 79 (2007)
613–616.
- B. Mansouri, A, Maleki, S.A. Johari, N, Reshahmanish, Effects
of cobalt oxide nanoparticles and cobalt ions on gill histopathology
of zebra fish (Danio rerio), AACL Bioflux., 8 (2015) 438–444.
- B. Mansouri, A. Maleki, S.A. Johari, B. Shahmoradi, E. Mohammadi,
S. Shahsavari, B. Davari, Histopathological effects of
copper oxide nanoparticles on the gill and intestine of common
carp (Cyprinus carpio) in the presence of titanium dioxide
nanoparticles, Chem. Ecol., 4 (2017) 295–308.
- L. Flohé, W.A. Günzler, Assay of glutathione peroxidase,
Methods. Enzymol., 105 (1984) 115–121.
- J.M. McCord, J. Fridovich, Super oxide dismutase: an enzymatic
function for erythrocuprein (hemocuprein), J. Biol.
Chem., 244 (1969) 6049–6055.
- P. Prieto, M. Pineda, M. Aguilar, Spectrophotometric quantitation
of antioxidant capacity through the formation of
phosphomolybdenum complex, specific application to the
determination of vitamin E, Ann. Biochem., 26 (1999) 337–341.
- B.Z.W. Vila, J.R.R. Marquardt, A.A. Frohlich, Effect of T-2 toxin
on in vivo lipid peroxidation and vitamin E status in mice,
Food Chem. Toxicol., 40 (2002) 479–486.
- T. Frankic, T. Pajk, V. Rezar, A. Levart, J. Salobir, The role of
dietary nucleotides in reduction of DNA damage induced by
T-2 toxin and deoxynivalenol in chicken leukocytes, Food.
Chem. Toxicol., 44 (2006) 1838–1844.
- F. Majnoni, B. Mansouri, M.R. Rezaei, A.H. Hamidian, Contaminations
of metals in tissues of common carp, Cyprinus
carpio and silver carp, Hypophthalmichthys molitrix from Zarivar
wetland, western Iran, Arch. Polish. Fish, 21 (2013) 11–18.
- B.K. Greenfield, S.J. Teh, J.R.M. Ross, J. Hunt, G.H. Zhang, J.A.
Davis, G. Ichikawa, D. Crane, S.S.O. Hung, D.F. Deng, F.C. Teh,
P.G. Green, Contaminant concentrations and histopathological
effects in Sacramento splittail (Pogonichthys macrolepidotus),
Arch. Environ. Contamin. Toxicol., 55 (2008) 270–281.
- V. Poleksic, M. Lenhardt, I. Jaric, D. Djordjevic, Z. Gacic, G. Cvijanovic,
B. Raskovic, Liver, gills, and skin histopathology and
heavy metal content of the Danube sterlet (Acipenser ruthenus Linnaeus, 1758), Environ. Toxicol. Chem., 29 (2010) 515–521.
- Y. Wu, Q. Zhou, Silver nanoparticles cause oxidative damage
and histological changes in medaka (Oryzias latipes) after 14
days of exposure, Environ. Toxicol. Chem., 32 (2013) 165–173.
- W. Jiraungkoorskul, S. Sshaphong, N. kangwanrangsan, M.
Kim, Histopathological study: the effect of ascorbic acid on
cadmium exposure in fish (Puntius altus), J. Fish. Aquat. Sci., 1
(2006) 191–199.
- R. Macirella, E. Brunelli, Morpho functional alterations in
zebra fish (Danio rerio) gills after exposure to mercury chloride,
Int. J. Mol. Sci., 18 (2017) 824–842.
- C.A. de Oliveira Ribeiro, L. Belger, E. Pelletier, C. Rouleau, Histopathological
evidence of inorganic mercury and methyl mercury
toxicity in the arctic charr (Salvelinus alpinus), Environ.
Res., 90 (2002) 217–222.
- R. Fracário, N.F. Verani, E.L.G. Espíndola, O Rocha, O Rigolin-
Sá, C.A. Andrade, Alterations on growth and gill morphology
of Danio rerio (pisces, ciprinidae) exposed to the toxic
sediments, Brazil, Arc. Biol. Technol., 46 (2003) 685–695.
- T. Wang, X. Long, Z. Liu, Y. Cheng, S. Yan, A Comparison effect
of copper nanoparticles versus copper sulphate on Juvenile
Epinephelus coioides: growth parameters, digestive enzymes,
body composition, and histology as biomarkers, Int. J. Genom.,
2015 (2015) 1–10.
- E.F. Pane, A. Haque, C.M. Wood, Mechanistic analysis of acute,
Niinduced respiratory toxicity in the rainbow trout (Oncorhynchus
mykiss): an exclusively branchial phenomenon, Aquat.
Toxicol., 69 (2004) 11–24.
- S. Pereira, L.A. Pinto, R. Cortes, A. Fontanhas-Fernandes, A. M.
Coimbra, S.M. Monteiro, Gill histopathological and oxidative
stress evaluation in native fish captured in Portuguese northwestern
rivers, Ecotoxicol Environ. Safe, 90 (2013)157–166.
- D.M.S. Santos, M.R.S. Melo, D.C.S. Mendes, I.K.B.S. Rocha, J.P.L.
Silva, S.M. Cantanhêde, P.C. Meletti, Histological changes in
gills of two fish species as indicators of water quality in Jansen
Lagoon (São Luís, Maranhão State, Brazil), Int. J. Environ. Res.
Public. Health, 11 (2014) 12927–12937.
- G.A. Al-Bairuty, B.J. Shaw, R.D. Handy, T.B. Henry, Histopathological
effects of waterborne copper nanoparticles and copper
sulphate on the organs of rainbow trout (Oncorhynchus mykiss),
Aquat. Toxicol., 126 (2013) 104–115.
- K.S. Rajkumar, N. Kanipandian, R. Thirumurugan, Toxicity
assessment on haemotology, biochemical and histopathological
alterations of silver nanoparticles-exposed freshwater fish
Labeo rohita, Appl. Nanosci., 6 (2016) 19–29.
- T. Ostaszewska, M. Chojnacki, M. Kamaszewski, E. Sawosz-Chwalibóg, Histopathological effects of silver and copper
nanoparticles on the epidermis, gills, and liver of Siberian
sturgeon, Environ. Sci. Pollut. Res., 23 (2016) 1621–1633.
- G. Sener, A.O. Sehirli, G. Ayanoglu-Dülger, Melatonin protects
against mercury (II)-induced oxidative tissue damage in rats,
Pharmacol. Toxicol., 93 (2003) 290–296.
- D.A. Monteiro, F.T. Rantin, A.L. Kalinin, Dietary intake of inorganic
mercury: bioaccumulation and oxidative stress parameters
in the neotropical fish Hoplias malabaricus, Ecotoxicol., 22
(2013) 446–456.
- X.N. Verlecar, K.B. Jena, G.B. Chainy, Biochemical markers of
oxidative stress in Perna viridis exposed to mercury and temperature,
Chem. Biol. Interact., 167 (2007) 219–226.
- N.J. Miller, C.A. Rice-Evans, Factors influencing the antioxidant
activity determined by the ABTS radical cation assay,
Free. Radic. Res., 26 (1997) 195–199.
- E.O. Oruç, N. Uner, Marker enzyme assessment in the liver of
Cyprinus carpio (L) exposed to 2,4-D and azinphosmethyl, J.
Biochem. Mol. Toxicol., 16 (2002) 182–188.
- R. Thirumavalavan, Effect of mercury on lipid peroxidation
and antioxidants in gill tissue of fresh water fish, labeo rohita,
Ijrsr, 5 (2010) 122–124.
- A. Margarat, G. Jagadeesan, S. Sethupathy, Comparative effect
of penicillamine and taurine on mercury poisoned mice, Mus
musculus, Pollut. Res., 20 (2001) 1–4.
- J.L. Franco, H.C. Braga, A.K.C. Nunes, C.M. Ribas, A.P. Silva,
Lactational exposure to inorganic mercury: evidence of neurotoxic
effects, Neurobehav. Toxicol. Teratol., 29 (2007) 360–367.
- P.C. Pickhardt, M. Stepanova, N.S. Fisher, Contrasting uptake
routes and tissue distributions of inorganic and methylmercury
in mosquito fish (Gambusia affinis) and redear sunfish
(Lepomis microlophus), Environ. Toxicol. Chem., 25 (2006) 2132–2142.
- R. Wang, W.X. Wang, Importance of speciation in understanding
mercury bioaccumulation in tilapia controlled by salinity
and dissolved organic matter, Environ. Sci. Technol., 44 (2010)
7964–7969.
- A. Boudou, F. Ribeyre, Experimental study of trophic contamination
of Salmo gairdneri by two mercury compounds—HgCl2
and CH3HgCl — Analysis at the organism and organ levels,
Water. Air. Soil. Pollut., 26 (1985) 137–148.
- E. Sumesh, M.S. Bootharaju, A.T. Pradeep, A practical silver
nanoparticle based adsorbent for the removal of Hg2+ from
water, J. Hazard. Mater., 189 (2011) 450–457.
- K.V. Katok, R.L. Whitby, T. Fukuda, T. Maekawa, I. Bezverkhyy,
S.V. Mikhalovsky, Hyperstoichiometric interaction between
silver and mercury at the nanoscale, Angew. Chem. Int. Ed.
Engl., 51 (2012) 2632–2635.
- T. Yordanova, P. Vasileva, I. Karadjova, D. Nihtianova, Submicron
silica spheres decorated with silver nanoparticles as a
new effective sorbent for inorganic mercury in surface waters,
Analyst., 139 (2014) 1532–1540.