References

  1. Z. Zhang, Y. Xu, X. Ma, F. Li, D. Liu, Z. Chen, F. Zhang, D.D. Dionysiou, Microwave degradation of methyl orange dye in aqueous solution in the presence of nano-TiO2-supported activated carbon (supported-TiO2/AC/MW), J. Hazard. Mater., 209–210 (2012) 271–277.
  2. Y.L. Pang, A.Z. Abdullah, Effect of low Fe3+ doping on characteristics, sonocatalytic activity and reusability of TiO2 nanotubes catalysts for removal of Rhodamine B from water, J. Hazard. Mater., 235–236 (2012) 326–335.
  3. R. Yuan, B. Zhou, D. Hua, C. Shi, Enhanced photocatalytic degradation of humic acids using Al and Fe co-doped TiO2 nanotubes under UV/ozonation for drinking water purification, J. Hazard. Mater., 262 (2013) 527–538.
  4. S. Peng, Y. Li, F. Jiang, G. Lu, S. Li, Effect of Be2+ doping TiO2 on its photocatalytic activity, Chem. Phys. Lett., 398(1) (2004) 235–239.
  5. Y. Li, S. Peng, F. Jiang, G. Lu, S. Li, Effect of doping TiO2 with alkaline-earth metal ions on its photocatalytic activity, J. Serb. Chem. Soc., 72(4) (2007) 393–402.
  6. Y. Li, Y. Xiang, S. Peng, X. Wang, L. Zhou, Modification of Zr-doped titania nanotube arrays by urea pyrolysis for enhanced visible-light photoelectrochemical H2 generation, Electrochim. Acta, 87 (2013) 794–800.
  7. Y. Li, Y. Jiang, S. Peng, F. Jiang, Nitrogen-doped TiO2 modified with NH4F for efficient photocatalytic degradation of formaldehyde under blue light-emitting diodes, J. Hazard. Mater., 182 (2010) 90–96.
  8. D. Hou, R. Goei, X. Wang, P. Wang, T.-T. Lim, Preparation of carbon-sensitized and Fe–Er codoped TiO2 with response surface methodology for bisphenol A photocatalytic degradation under visible-light irradiation, Appl. Catal. B Environ., Appl. Catal. B Environ., 126 (2012) 121–133.
  9. Y. Li, G. Ma, S. Peng, G. Lu, S. Li, Boron and nitrogen co-doped titania with enhanced visible-light photocatalytic activity for hydrogen evolution, Appl. Surf. Sci., 254(21) (2008) 6831–6836.
  10. S. Naraginti, T.V. Thejaswini, D. Prabhakaran, A. Sivakumar, V.S. Satyanarayana, A.S. Arun Prasad, Enhanced photo-catalytic activity of Sr and Ag co-doped TiO2 nanoparticles for the degradation of Direct Green-6 and Reactive Blue-160 under UV and visible light, Spectrochim. Acta A, 149 (2015) 571–579.
  11. H. Eskandarloo, A. Badiei, M.A. Behnajady, G.M. Ziarani, Ultrasonic-assisted sol-gel synthesis of samarium, cerium co-doped TiO2 nanoparticles with enhanced sonocatalytic efficiency, Ultrason. Sonochem., 26 (2015) 281–292.
  12. M. Sanchez-Dominguez, G. Morales-Mendoza, M.J. Rodriguez-Vargas, C.C. Ibarra-Malo, A.A. Rodriguez-Rodriguez, A.V. Vela-Gonzalez, S.A. Perez-Garcia, R. Gomez, Synthesis of Zn-doped TiO2 nanoparticles by the novel oil-in-water (O/W) microemulsion method and their use for the photocatalytic degradation of phenol, J. Environ. Chem. Eng., 3 (2015) 3037–3047.
  13. R. Yuan, B. Zhou, D. Hua, C. Shi, L. Ma, Effect of metal-ion doping on the characteristics and photocatalytic activity of TiO2 nanotubes for the removal of toluene from water, Water Sci. Technol., 69 (2014) 1697–1704.
  14. M.R. Eskandarian, H. Choi, M. Fazli, M.H. Rasoulifard, Effect of UV-LED wavelengths on direct photolytic and TiO2 photocatalytic degradation of emerging contaminants in water, Chem. Eng. J., 300 (2016) 414–422.
  15. H. Chaker, L. Chérif-Aouali, S. Khaoulani, A. Bengueddach, S. Fourmentin, Photocatalytic degradation of methyl orange and real wastewater by silver doped mesoporous TiO2 catalysts, J. Photoch. Photobio. A, 318 (2016) 142–149.
  16. V.K. Gupta, R. Saravanan, S. Agarwal, F. Gracia, M.M. Khan, J. Qin, R.V. Mangalaraja, Degradation of azo dyes under different wavelengths of UV light with chitosan-SnO2 nanocomposites, J. Mol. Liq., 232 (2017) 423–430.
  17. R. Yuan, B. Zhou, L. Ma, Removal of toluene from water by photocatalytic oxidation with activated carbon supported Fe3+-doped TiO2 nanotubes, Water Sci. Technol., 70 (2014) 642– 648.
  18. H.D. Mansilla, A. Mora, C. Pincheira, M.A. Mondaca, P.D. Marcato, N. Durán, J. Freer, New photocatalytic reactor with TiO2 coating on sintered glass cylinders, Appl. Catal. B Environ., 76 (2007) 57–63.
  19. Y. Huo, Z. Xie, X. Wang, H. Li, M. Hoang, R.A. Caruso, Methyl orange removal by combined visible-light photocatalysis and membrane distillation, Dyes Pigments, 98 (2013) 106–112.
  20. L. Ravichandran, K. Selvam, B. Krishnakumar, M. Swaminathan, Photovalorisation of pentafluorobenzoic acid with platinum doped TiO2, J. Hazard. Mater., 167 (2009) 763–769.
  21. L. Deng, S. Wang, D. Liu, B. Zhu, W. Huang, S. Wu, S. Zhang, Synthesis, characterization of Fe-doped TiO2 nanotubes with high photocatalytic activity, Catal. Lett., 129 (2009) 513–518.
  22. J. Xiao, Y. Xie, H. Cao, F. Nawaz, S. Zhang, Y. Wang, Disparate roles of doped metal ions in promoting surface oxidation of TiO2 photocatalysis, J. Photoch. Photobio. A, 315 (2016) 59–66.
  23. S. Sood, A. Umar, S.K. Mehta, S.K. Kansal, Highly effective Fe-doped TiO2 nanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxic organic compounds, J. Colloid Interf. Sci., 450 (2015) 213–223.
  24. H.E. Chao, Y.U. Yun, H.U. Xingfang, A. Larbot, Effect of silver doping on the phase transformation and grain growth of solgel titania powder, J. Eur. Ceram. Soc., 23 (2003) 1457–1464.
  25. A. Mondal, B. Adhikary, D. Mukherjee, Room-temperature synthesis of air stable cobalt nanoparticles and their use as catalyst for methyl orange dye degradation, Colloids Surf. A Physicochem. Eng. Asp., 482 (2015) 248–257.
  26. Y. He, F. Grieser, M. Ashokkumar, The mechanism of sonophotocatalytic degradation of methyl orange and its products in aqueous solutions, Ultrason. Sonochem., 18 (2011) 974–980.
  27. T. Chen, Y. Zheng, J.M. Lin, G. Chen, Study on the photocatalytic degradation of methyl orange in water using Ag/ZnO as catalyst by liquid chromatography electrospray ionization ion-trap mass spectrometry, J. Am. Soc. Mass Spectr., 19 (2008) 997–1003.
  28. H. Li, J. Guo, L. Yang, Y. Lan, Degradation of methyl orange by sodium persulfate activated with zero-valent zinc, Sep. Purif. Technol., 132 (2014) 168–173.
  29. S. Filice, D. D’Angelo, S. Libertino, I. Nicotera, V. Kosma, V. Privitera, S. Scalese, Graphene oxide and titania hybrid Nafion membranes for efficient removal of methyl orange dye from water, Carbon, 82 (2015) 489–499.
  30. J. Kaur, S. Singhal, Facile synthesis of ZnO and transition metal doped ZnO nanoparticles for the photocatalytic degradation of Methyl Orange, Ceram. Int., 40 (2014) 7417–7424.
  31. F. Huang, L. Chen, H. Wang, T. Feng, Z. Yan, Degradation of methyl orange by atmospheric DBD plasma: analysis of the degradation effects and degradation path, J. Electrost., 70 (2012) 43–47.
  32. M. Gar Alalm, A. Tawfik, S. Ookawara, Enhancement of photocatalytic activity of TiO2 by immobilization on activated carbon for degradation of pharmaceuticals, J. Environ. Chem. Eng., 4 (2016) 1929–1937.
  33. F.T. Li, Y. Zhao, Y.J. Hao, X.J. Wang, R.H. Liu, D.S. Zhao, D.M. Chen, N-doped P25 TiO2-amorphous Al2O3 composites: one-step solution combustion preparation and enhanced visible-light photocatalytic activity, J. Hazard. Mater., 239–240 (2012) 118–127.
  34. J.W. Shi, H.J. Cui, J.W. Chen, M.L. Fu, B. Xu, H.Y. Luo, Z.L. Ye, TiO2/activated carbon fibers photocatalyst: effects of coating procedures on the microstructure, adhesion property, and photocatalytic ability, J. colloid Interf. Sci., 388 (2012) 201–208.
  35. Y. Li, J. Wang, S. Peng, G. Lu, S. Li, Photocatalytic hydrogen generation in the presence of glucose over ZnS-coated ZnIn2S4 under visible light irradiation, Int. J. Hydrogen. Energy, 35(13) (2010) 7116–7126.
  36. M. Lafjah, F. Djafri, A. Bengueddach, N. Keller, V. Keller, Beta zeolite supported sol-gel TiO2 materials for gas phase photocatalytic applications, J. Hazard. Mater., 186 (2011) 1218–1225.
  37. A.C. Martins, A.L. Cazetta, O. Pezoti, J.R.B. Souza, T. Zhang, E.J. Pilau, T. Asefa, V.C. Almeida, Sol-gel synthesis of new TiO2/activated carbon photocatalyst and its application for degradation of tetracycline, Ceram. Int., 43 (2017) 4411–4418.
  38. P. Fu, Y. Luan, X. Dai, Preparation of activated carbon fibers supported TiO2 photocatalyst and evaluation of its photocatalytic reactivity, J. Mol. Catal. A, 221 (2004) 81–88.
  39. R. Ma, X. Wang, J. Huang, J. Song, J. Zhang, X. Wang, Photocatalytic degradation of salicylic acid with magnetic activated carbon-supported F-N codoped TiO2 under visible light, Vacuum, 141 (2017) 157–165.