References

  1. M. Al-Ahmad, F.A. Aleem, A. Mutiri, A. Ubaisy, Biofuoling in RO membrane systems Part 1: Fundamentals and control, Desalination, 132 (2000) 173–179.
  2. M.C. Hogan, K.J. Foreman, M. Naghavi, S.Y. Ahn, M. Wang, S.M. Makela, A.D. Lopez, R. Lozano, C.J. Murray, Maternal mortality for 181 countries, 1980–2008: a systematic analysis of progress towards Millennium Development Goal 5, The lancet, 375 (2010) 1609–1623.
  3. A. Klobut, The impacts of mega trends on water supply and sanitation in selected large cities: Current state and future challenges, in: Civil and Environmental Engineering, Aalto University, www.aalto.fi, 2013.
  4. R.F. Service, Desalination freshens up, Science (New York, NY), 313 (2006) 1088.
  5. WHO, in, http://www.who.int/mediacentre/news/releases/2017/water-sanitation-hygiene/en/, 2017.
  6. J. Le Dirach, S. Nisan, C. Poletiko, Extraction of strategic materials from the concentrated brine rejected by integrated nuclear desalination systems, Desalination, 182 (2005) 449–460.
  7. M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Mariñas, A.M. Mayes, Science and technology for water purification in the coming decades, Nature, 452 (2008) 301–310.
  8. V.G. Gude, N. Nirmalakhandan, S. Deng, Renewable and sustainable approaches for desalination, Renew. Sustain. Energy Rev., 14 (2010) 2641–2654.
  9. G.P. Narayan, M.H. Sharqawy, E.K. Summers, J.H. Lienhard, S.M. Zubair, M. Antar, The potential of solar-driven humidification–dehumidification desalination for small-scale decentralized water production, Renew. Sustain. Energy Rev., 14 (2010) 1187–1201.
  10. M. Buonomenna, J. Bae, Membrane processes and renewable energies, Renew. Sustain. Energy Rev., 43 (2015) 1343–1398.
  11. A. Plappally, Energy requirements for water production, treatment, end use, reclamation, and disposal, Renew. Sustain. Energy Rev., 16 (2012) 4818–4848.
  12. M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment, Science, 333 (2011) 712–717.
  13. P.P. Mane, RO Process Optimization Based on Deterministic Process Model Coupled with Stochastic Cost Model, Publisher: Georgia Tech Library, Place: Georgia Institute of Technology, USA URL: http://hdl.handle.net/1853/14486 2007.
  14. L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin, Reverse osmosis desalination: water sources, technology, and today’s challenges, Water Res., 43 (2009) 2317–2348.
  15. http://idadesal.org/desalination-101/desalination-by-the-numbers/in.
  16. Water world, in, http://www.waterworld.com/articles/2013/10/global-desalination-capacity-tops-80-million-cubic-meters-per-day.html, 2013.
  17. J. Del Bene, G. Jirka, J. Largier, Ocean brine disposal, Desalination, 97 (1994) 365–372.
  18. D.A. Roberts, E.L. Johnston, N.A. Knott, Impacts of desalination plant discharges on the marine environment: A critical review of published studies, Water Res., 44 (2010) 5117–5128.
  19. A. Lamei, E. Von Münch, P. Van der Zaag, Environmental impact and economic costs of brine disposal from RO desalination plants in arid coastal regions, in: Proc. IDA World Congress, 2009, pp. 7–12.
  20. M. Mickley, Environmental considerations for the disposal of desalination concentrates, Int. Desal. Water Reuse Quart., 5 (1996) 56–61.
  21. J. Truesdall, M. Mickley, R. Hamilton, Survey of membrane drinking water plant disposal methods, Desalination, 102 (1995) 93–105.
  22. M.C. Mickley, Membrane Concentrate Disposal: Practices and Regulation, Final Report, US Department of the Interior, Bureau of Reclamation, Technical Service Center, Water Treatment Engineering and Research Group, 2001.
  23. M. Ahmed, A. Arakel, D. Hoey, M. Coleman, Integrated power, water and salt generation: a discussion paper, Desalination, 134 (2001) 37–45.
  24. J. Arnal, M. Sancho, I. Iborra, J. Gozalvez, A. Santafe, J. Lora, Concentration of brines from RO desalination plants by natural evaporation, Desalination, 182 (2005) 435–439.
  25. C.J. Gabelich, A. Rahardianto, C.R. Northrup, T.I. Yun, Y. Cohen, Process evaluation of intermediate chemical demineralization for water recovery enhancement in production-scale brackish water desalting, Desalination, 272 (2011) 36–45.
  26. M. Ahmed, W.H. Shayya, D. Hoey, J. Al-Handaly, Brine disposal from reverse osmosis desalination plants in Oman and the United Arab Emirates, Desalination, 133 (2001) 135–147.
  27. M. Ahmed, W.H. Shayya, D. Hoey, J. Al-Handaly, Brine disposal from inland desalination plants: research needs assessment, Water Int., 27 (2002) 194–201.
  28. R. Einav, F. Lokiec, Environmental aspects of a desalination plant in Ashkelon, Desalination, 156 (2003) 79–85.
  29. V. Jegatheesan, J. Liow, L. Shu, S. Kim, C. Visvanathan, The need for global coordination in sustainable development, J. Cleaner Prod., 17 (2009) 637–643.
  30. S. El-Manharawy, A. Hafez, Water type and guidelines for RO system design, Desalination, 139 (2001) 97–113.
  31. F.W. Pontius, E. Kawczynski, S.J. Koorse, Regulations governing membrane concentrate disposal, J. AWWA, 88 (1996) 44.
  32. B. Van der Bruggen, L. Lejon, C. Vandecasteele, Reuse, treatment, and discharge of the concentrate of pressure-driven membrane processes, Environ. Sci. Technol., 37 (2003) 3733–3738.
  33. M.S. Mohsen, J.O. Jaber, A photo voltaic-powered system for water desalination, Desalination, 138 (2001) 129–136.
  34. T. Qiu, P.A. Davies, Comparison of configurations for high-recovery inland desalination systems, Water, 4 (2012) 690–706.
  35. M. Wilf, K. Klinko, Optimization of seawater RO systems design, Desalination, 138 (2001) 299–306.
  36. A. Almulla, M. Eid, P. Côté, J. Coburn, Developments in high recovery brackish water desalination plants as part of the solution to water quantity problems, Desalination, 153 (2003) 237–243.
  37. F. Maskan, D.E. Wiley, L.P. Johnston, D.J. Clements, Optimal design of reverse osmosis module networks, AIChE Journal, 46 (2000) 946–954.
  38. Y. Al-Wazzan, M. Safar, A. Mesri, Reverse osmosis brine staging treatment of subsurface water, Desalination, 155 (2003) 141–151.
  39. J.E. Nemeth, Innovative system designs to optimize performance of ultra-low pressure reverse osmosis membranes, Desalination, 118 (1998) 63–71.
  40. F. Vince, F. Marechal, E. Aoustin, P. Breant, Multi-objective optimization of RO desalination plants, Desalination, 222 (2008) 96–118.
  41. H. Laborde, K. Franca, H. Neff, A. Lima, Optimization strategy for a small-scale reverse osmosis water desalination system based on solar energy, Desalination, 133 (2001) 1–12.
  42. Y.-Y. Lu, Y.-D. Hu, X.-L. Zhang, L.-Y. Wu, Q.-Z. Liu, Optimum design of reverse osmosis system under different feed concentration and product specification, J. Membr. Sci., 287 (2007) 219–229.
  43. M. Alghoul, P. Poovanaesvaran, K. Sopian, M.Y. Sulaiman, Review of brackish water reverse osmosis (BWRO) system designs, Renew. Sustain. Energy Rev., 13 (2009) 2661–2667.
  44. B.C. McCool, A. Rahardianto, J. Faria, K. Kovac, D. Lara, Y. Cohen, Feasibility of reverse osmosis desalination of brackish agricultural drainage water in the San Joaquin Valley, Desalination, 261 (2010) 240–250.
  45. R.Y. Ning, T.L. Troyer, Tandom reverse osmosis process for zero-liquid discharge, Desalination, 237 (2009) 238–242.
  46. R.Y. Ning, A.J. Tarquin, Crystallization of salts from super-concentrate produced by tandem RO process, Desal. Water Treat., 16 (2010) 238–242.
  47. R. Singh, Brine recovery at industrial RO plants: Conceptual process design studies, Desal. Water Treat., 8 (2009) 54–67.
  48. T. Qiu, O. Igobo, P. Davies, DesaLink: solar powered desalination of brackish groundwater giving high output and high recovery, Desal. Water Treat., 51 (2013) 1279–1289.
  49. P.A. Davies, A solar-powered reverse osmosis system for high recovery of freshwater from saline groundwater, Desalination, 271 (2011) 72–79.
  50. A. Efraty, R.N. Barak, Z. Gal, Closed circuit desalination series no-2: New affordable technology for sea water desalination of low energy and high flux using short modules without need of energy recovery, Desal. Water Treat., 42 (2012) 189–196.
  51. C.R. Acevedo, J. Gardea-Torresdey, A. Tarquin, Silica removal from brine by using ion exchange, in, University of Texas at El Paso, 2009.
  52. R.Y. Ning, A. Tarquin, M. Trzcinski, G. Patwardhan, Recovery optimization of RO concentrate from desert wells, Desalination, 201 (2006) 315–322.
  53. A. Rahardianto, J. Gao, C.J. Gabelich, M.D. Williams, Y. Cohen, High recovery membrane desalting of low-salinity brackish water: integration of accelerated precipitation softening with membrane RO, J. Membr. Sci., 289 (2007) 123–137.
  54. C.J. Gabelich, M.D. Williams, A. Rahardianto, J.C. Franklin, Y. Cohen, High-recovery reverse osmosis desalination using intermediate chemical demineralization, J. Membr. Sci., 301 (2007) 131–141.
  55. A. Rahardianto, B.C. McCool, Y. Cohen, Accelerated desupersaturation of reverse osmosis concentrate by chemically- enhanced seeded precipitation, Desalination, 264 (2010) 256–267.
  56. M. Turek, P. Dydo, R. Klimek, Salt production from coal-mine brine in ED–evaporation–crystallization system, Desalination, 184 (2005) 439–446.
  57. M. Turek, Dual-purpose desalination-salt production electro dialysis, Desalination, 153 (2003) 377–381.
  58. Y. Tanaka, R. Ehara, S. Itoi, T. Goto, Ion-exchange membrane electrodialytic salt production using brine discharged from a reverse osmosis seawater desalination plant, J. Membr. Sci., 222 (2003) 71–86.
  59. K. Takashima, S. Futaki, F. Hanada, M. Yamamoto, 8th World Salt Symposium, RM Geertman, Ed, Elsevier, 1 (2000) 641– 646.
  60. Z. Wang, Y. Luo, P. Yu, Recovery of organic acids from waste salt solutions derived from the manufacture of cyclohexanone by electro dialysis, J. Membr. Sci., 280 (2006) 134–137.
  61. J. Lemaignen, Electro dialysis desalination: New units, Desalination, 3 (1967) 203–206.
  62. K. Sato, S. Kobayashi, S. Okado, Desalination and reuse of industrial waste water by electro dialysis, Desalination, 47 (1983) 363–373.
  63. S. Adhikary, P. Narayanan, S. Thampy, N. Dave, D. Chauhan, V. Indusekhar, Desalination of brackish water of higher salinity by electro dialysis, Desalination, 84 (1991) 189–200.
  64. T. Sirivedhin, J. McCue, L. Dallbauman, Reclaiming produced water for beneficial use: salt removal by electro dialysis, J. Membr. Sci., 243 (2004) 335–343.
  65. P. Tsiakis, L.G. Papageorgiou, Optimal design of an electro dialysis brackish water desalination plant, Desalination, 173 (2005) 173–186.
  66. J. Ortiz, J. Sotoca, E. Exposito, F. Gallud, V. Garcia-Garcia, V. Montiel, A. Aldaz, Brackish water desalination by electro dialysis: batch recirculation operation modeling, J. Membr. Sci., 252 (2005) 65–75.
  67. D. Elyanow, J. Mahoney, Desalination and concentration of flue gas scrubber effluents using the electro dialysis reversal process, Desalination, 67 (1987) 283–298.
  68. F. Smagghe, J. Mourgues, J. Escudier, T. Conte, J. Molinier, C. Malmary, Recovery of calcium tartrate and calcium malate in effluents from grape sugar production by electro dialysis, Bioresour. Technol., 39 (1992) 185–189.
  69. A. Bernardes, R.D. Costa, V. Fallavena, M. Rodrigues, M. Trevisan, J.Z. Ferreira, Electro chemistry as a clean technology for the treatment of effluents: the application of electro dialysis, Metal Finishing, 98 (2000) 52–114.
  70. R. Rautenbach, R. Habbe, Seeding technique for “zero-discharge” processes, adaption to electro dialysis, Desalination, 84 (1991) 153–161.
  71. T. Chakrabarty, A.M. Rajesh, A. Jasti, A.K. Thakur, A.K. Singh, S. Prakash, V. Kulshrestha, V.K. Shahi, Stable ion-exchange membranes for water desalination by electro dialysis, Desalination, 282 (2011) 2–8.
  72. H. Strathmann, Electro dialysis, a mature technology with a multitude of new applications, Desalination, 264 (2010) 268–288.
  73. I. Al-Mutaz, M. Soliman, A. Daghthem, Optimum design for a hybrid desalting plant, Desalination, 76 (1989) 177–187.
  74. L. Awerbuch, S. May, R. Soo-Hoo, V. Van Der Mast, Hybrid desalting systems, Desalination, 76 (1989) 189–197.
  75. I. Kamal, W. Schneider, G. Tusel, Process arrangements for hybrid sea water desalination plants, Desalination, 76 (1989) 323–335.
  76. C.R. Martinetti, A.E. Childress, T.Y. Cath, High recovery of concentrated RO brines using forward osmosis and membrane distillation, J. Membr. Sci., 331 (2009) 31–39.
  77. Y. Oren, E. Korngold, N. Daltrophe, R. Messalem, Y. Volkman, L. Aronov, M. Weismann, N. Bouriakov, P. Glueckstern, J. Gilron, Pilot studies on high recovery BWRO-EDR for near zero liquid discharge approach, Desalination, 261 (2010) 321–330.
  78. T.Y. Cath, N.T. Hancock, C.D. Lundin, C. Hoppe-Jones, J.E. Drewes, A multi-barrier osmotic dilution process for simultaneous desalination and purification of impaired water, J. Membr. Sci., 362 (2010) 417–426.
  79. Y. Zhang, K. Ghyselbrecht, B. Meesschaert, L. Pinoy, B. Van der Bruggen, Electro dialysis on RO concentrate to improve water recovery in wastewater reclamation, J. Membr. Sci., 378 (2011) 101–110.
  80. Y. Zhang, K. Ghyselbrecht, R. Vanherpe, B. Meesschaert, L. Pinoy, B. Van der Bruggen, RO concentrate minimization by electro dialysis: techno-economic analysis and environmental concerns, J. Environ. Manage., 107 (2012) 28–36.
  81. A. Altaee, N. Hilal, High recovery rate NF–FO–RO hybrid system for inland brackish water treatment, Desalination, 363 (2015) 19–25.
  82. S. Zhao, L. Zou, D. Mulcahy, Brackish water desalination by a hybrid forward osmosis–nanofiltration system using divalent draw solute, Desalination, 284 (2012) 175–181.
  83. O. Bamaga, A. Yokochi, B. Zabara, A. Babaqi, Hybrid FO/RO desalination system: Preliminary assessment of osmotic energy recovery and designs of new FO membrane module configurations, Desalination, 268 (2011) 163–169.
  84. T. Cath, J. Drewes, C. Lundin, A Novel Hybrid Forward Osmosis Process for Drinking Water Augmentation Using Impaired Water and Saline Water Sources; WERC Consortium for Environmental Education and Technology Development at New Mexico State University and Water Research Foundation, Water Research Foundation: Las Cruces, NM, USA, (2009).
  85. V. Yangali-Quintanilla, Z. Li, R. Valladares, Q. Li, G. Amy, Indirect desalination of Red Sea water with forward osmosis and low pressure reverse osmosis for water reuse, Desalination, 280 (2011) 160–166.
  86. S. Thampy, G.R. Desale, V.K. Shahi, B.S. Makwana, P.K. Ghosh, Development of hybrid electrodialysis-reverse osmosis domestic desalination unit for high recovery of product water, Desalination, 282 (2011) 104–108.
  87. M. Turek, J. Was, P. Dydo, Brackish water desalination in RO–single pass EDR system, Desal. Water Treat., 7 (2009) 263–266.
  88. S. Sethi, P. Xu, J. Drewes, Concentrate volume minimization for impaired water treatment with reverse osmosis, Proc. Water Environ. Fed., 2009 (2009) 5312–5319.
  89. J. Glater, Y. Cohen, Brine disposal from land based membrane desalination plants: A critical assessment, Prepared for the Metropolitan Water District of Southern California, (2003).
  90. EMWD, Evaluation of Alternative Processes for Zero Liquid Discharge: Draft Report, EMWD, Fountain Valley, CA, , in, 2007.
  91. R. Bond, B. Batchelor, T. Davis, B. Klayman, Zero liquid discharge desalination of brackish water with an innovative form of electro dialysis: electro dialysis metathesis, Florida Water Resour. J., 63 (2011) 36–44.
  92. Electro dialysis and Electro dialysis Reversal: M38, American Water Works Association, 1995.
  93. S. Miller, H. Shemer, R. Semiat, Energy and environmental issues in desalination, Desalination, 366 (2015) 2–8.
  94. M. Mickley, Survey of high-recovery and zero liquid discharge technologies for water utilities, Water Reuse Foundation, 2008.
  95. S.O. Odu, A.G. van der Ham, S. Metz, S.R. Kersten, Design of a process for supercritical water desalination with zero liquid discharge, Ind. Eng. Chem. Res., 54 (2015) 5527–5535.
  96. J. Morillo, J. Usero, D. Rosado, H. El Bakouri, A. Riaza, F.-J. Bernaola, Comparative study of brine management technologies for desalination plants, Desalination, 336 (2014) 32–49.
  97. V. Freger, Zero Liquid Discharge (ZLD) Concept, Evolution and Technology Options, in “Zero Liquid Discharge Workshop,, Gandhi nagar, India, 2014.
  98. Brine-Concentrate Treatment and Disposal Options Report, part 2, in Southern California, Lower Colorado Region, 2009, pp. 58.
  99. D. Bowlin, R. Ludlum, Case studies: zero liquid discharge systems at three gas-fired power plants, in: 1992 ASME Cogen Turbo Power Congress, Houston, 1992, pp. 1.
  100. B.E. Heimbigner, Zero liquid discharge control in United States coal fired steam electric stations, Water Sci. Technol., 15 (1983) 101–118.
  101. R. Dascher, R. Lepper, Meeting Water-Recycle Requirements at a Western Zero-Discharge Plant, 1977.
  102. R. Rautenbach, J. Gebel, On the concentration of RO-brines by seeded horizontal tube falling film evaporation (HTFE), Desalination, 76 (1989) 107–119.
  103. T. Tong, M. Elimelech, The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions, Environ. Sci. Technol., 50 (2016) 6846– 6855.
  104. T. Pankratz, K. Johanson, A hybrid zero liquid discharge treatment system, IGTI ASME Cogen-Turbo, 7 (1992) 455–461.
  105. A. Seigworth, R. Ludlum, E. Reahl, Case study: Integrating membrane processes with evaporation to achieve economical zero liquid discharge at the Doswell Combined Cycle Facility, Desalination, 102 (1995) 81–86.
  106. E. Korngold, L. Aronov, N. Daltrophe, Electro dialysis of brine solutions discharged from an RO plant, Desalination, 242 (2009) 215–227.
  107. K. Loganathan, P. Chelme-Ayala, M.G. El-Din, Treatment of basal water using a hybrid electro dialysis reversal–reverse osmosis system combined with a low-temperature crystallizer for near-zero liquid discharge, Desalination, 363 (2015) 92–98.
  108. A.H. Swift, H. Lu, H. Becerra, Zero discharge waste brine management for desalination plants, US Department of the Interior, Bureau of Reclamation, Denver Office, Technical Service Center, Water Treatment Engineering and Research Group, 2002.
  109. R. Bond, S. Veerapaneni, Zero liquid discharge for inland desalination, AWWA Research Foundation, 2007.
  110. S. Heijman, H. Guo, S. Li, J. Van Dijk, L. Wessels, Zero liquid discharge: Heading for 99% recovery in nano filtration and reverse osmosis, Desalination, 236 (2009) 357–362.
  111. L. Katzir, Y. Volkmann, N. Daltrophe, E. Korngold, R. Mesalem, Y. Oren, J. Gilron, WAIV-Wind aided intensified evaporation for brine volume reduction and generating mineral by products, Desal. Water Treat., 13 (2010) 63–73.
  112. J. Gilron, Y. Folkman, R. Savliev, M. Waisman, O. Kedem, WAIV—wind aided intensified evaporation for reduction of desalination brine volume, Desalination, 158 (2003) 205– 214.
  113. J. Truesdall, M. Mickley, R. Hamilton, Survey of membrane drinking water plant disposal methods, Desalination, 102 (1995) 93–105.
  114. Brine-Concentrate Treatment and Disposal Options Report, in, Southern California Regional Brine-Concentrate Management, October 2009, pp. 56.
  115. S.T. Lynch, B. Rohwer, Z. Erdal, A. Lynch, Brine/concentrate management strategies for Southern California, Proc. Water Environ. Fed., 2005 (2005) 3563–3588.
  116. D. Cingolani, A.L. Eusebi, P. Battistoni, Osmosis process for leachate treatment in industrial platform: Economic and performances evaluations to zero liquid discharge, J. Environ. Manage., 203(2) (2016) 782–790.
  117. S. Tabassum, Y. Zhang, Z. Zhang, An integrated method for palm oil mill effluent (POME) treatment for achieving zero liquid discharge–a pilot study, J. Cleaner Prod., 95 (2015) 148– 155.
  118. I. Vergili, Y. Kaya, U. Sen, Z.B. Gönder, C. Aydiner, Techno- economic analysis of textile dye bath wastewater treatment by integrated membrane processes under the zero liquid discharge approach, Resour. Conserv. Recycl., 58 (2012) 25–35.
  119. N. Sueviriyapan, U. Suriyapraphadilok, K. Siemanond, A. Quaglia, R. Gani, Industrial wastewater treatment network based on recycling and rerouting strategies for retrofit design schemes, J. Cleaner Prod., 111 (2016) 231–252.
  120. A. Al-Karaghouli, L.L. Kazmerski, Energy consumption and water production cost of conventional and renewable-energy- powered desalination processes, Renew. Sustain. Energy Rev., 24 (2013) 343–356.
  121. D. Almasri, K.A. Mahmoud, A. Abdel-Wahab, Two-stage sulfate removal from reject brine in inland desalination with zero-liquid discharge, Desalination, 362 (2015) 52–58.
  122. D. Xevgenos, K. Moustakas, D. Malamis, M. Loizidou, An overview on desalination and sustainability: renewable energy-driven desalination and brine management, Desal. Water Treat., 57 (2016) 2304–2314.
  123. R. Silva, L. Cadorin, J. Rubio, Sulphate ions removal from an aqueous solution: I. Co-precipitation with hydrolysed aluminum-bearing salts, Miner. Eng., 23 (2010) 1220–1226.
  124. R. Sobhani, M. Abahusayn, C.J. Gabelich, D. Rosso, Energy footprint analysis of brackish groundwater desalination with zero liquid discharge in inland areas of the Arabian Peninsula, Desalination, 291 (2012) 106–116.
  125. F. Till berg, ZLD-Systems—An Overview, Department of Energy Technology, Royal Institute of Technology, KTH Stockholm, (2004).
  126. J. Jordahl, Beneficial and nontraditional uses of concentrate, Water Reuse Foundation, 2006.
  127. T.A. Davis, Zero Discharge Seawater Desalination: Integrating the Production of Freshwater, Salt, Magnesium, and Bromine. Desalination and Water Purification Research Development Program Report No. 111, (2007).
  128. A. Ravizky, N. Nadav, Salt production by the evaporation of SWRO brine in Eilat: a success story, Desalination, 205 (2007) 374–379.
  129. D.H. Kim, A review of desalting process techniques and economic analysis of the recovery of salts from retentates, Desalination, 270 (2011) 1–8.
  130. G.Z. Ramon, B.J. Feinberg, E.M. Hoek, Membrane-based production of salinity-gradient power, Energy Environ. Sci., 4 (2011) 4423–4434.
  131. J.W. Post, J. Veerman, H.V. Hamelers, G.J. Euverink, S.J. Metz, K. Nymeijer, C.J. Buisman, Salinity-gradient power: Evaluation of pressure-retarded osmosis and reverse electrodialysis, J. Membr. Sci., 288 (2007) 218–230.
  132. M. Turek, B. Bandura, Renewable energy by reverse electro dialysis, Desalination, 205 (2007) 67–74.
  133. P. Długołe􀉢cki, A. Gambier, K. Nijmeijer, M. Wessling, Practical potential of reverse electro dialysis as process for sustainable energy generation, Environ. Sci. Technol., 43 (2009) 6888–6894.
  134. J. Veerman, M. Saakes, S. Metz, G. Harmsen, Reverse electro dialysis: performance of a stack with 50 cells on the mixing of sea and river water, J. Membr. Sci., 327 (2009) 136–144.
  135. J. Veerman, M. Saakes, S.J. Metz, G.J. Harmsen, Electrical power from sea and river water by reverse electro dialysis: a first step from the laboratory to a real power plant, Environ. Sci. Technol., 44 (2010) 9207–9212.
  136. A. Achilli, T.Y. Cath, A.E. Childress, Power generation with pressure retarded osmosis: An experimental and theoretical investigation, J. Membr. Sci., 343 (2009) 42–52.
  137. M. Petersková, C. Valderrama, O. Gibert, J.L. Cortina, Extraction of valuable metal ions (Cs, Rb, Li, U) from reverse osmosis concentrate using selective sorbents, Desalination, 286 (2012) 316–323.
  138. D. Randall, J. Nathoo, A. Lewis, A case study for treating a reverse osmosis brine using eutectic freeze crystallization — Approaching a zero waste process, Desalination, 266 (2011) 256–262.
  139. B. Manana, P. Nembudani, M. Rodriguez-Pascual, Eutectic Freeze Crystallization process for the treatment of ternary textile wastewater concentrates, UR@ UCT: Undergraduate Research, 1 (2015).
  140. G. Stepakoff, D. Siegelman, R. Johnson, W. Gibson, Development of a eutectic freezing process for brine disposal, Desalination, 15 (1974) 25–38.
  141. F. van der Ham, M.M. Seckler, G.J. Witkamp, Eutectic freeze crystallization in a new apparatus: the cooled disk column crystallizer, Chem. Eng. Processing: Process Intens., 43 (2004) 161-–167.
  142. C. Himawan, H. Kramer, G. Witkamp, Study on the recovery of purified MgSO4·7 H2O crystals from industrial solution by eutectic freezing, Separ. Purif. Technol., 50 (2006) 240–248.
  143. I. Watson, J. Morin, OJ and Henthorne, L.(2003) Desalting Handbook for Planners, United States Department of the Interior, Bureau of Reclamation, Denver, CO. This page is intentionally left blank, 233.
  144. P.M. Mickley, Review of Concentrate Management Options.
  145. B. Ladewig, B. Asquith, Desalination Concentrate Management, Springer Science & Business Media, 2011.
  146. P. Xu, T.Y. Cath, A.P. Robertson, M. Reinhard, J.O. Leckie, J.E. Drewes, Critical review of desalination concentrate management, treatment and beneficial use, Environ. Eng. Sci., 30 (2013) 502–514.
  147. N.K. Shammas, C.W. Sever, L.K. Wang, Deep-well injection for waste management, in: Advanced Biological Treatment Processes, Springer, 2009, pp. 521–582.
  148. U.S.E.P. Agency, Technical Program Overview: Underground Injection Control Regulations, in: U.S.E.P. Agency (Ed.), 2002.
  149. E. Christen, I. Jolly, F. Leaney, K. Narayan, G. Walker, On-Farm and Community Scale Salt Disposal Basins on the Riverine Plain Underlying Principles for Basin Use, 2000.
  150. T. Davis, S. Rayman, Zero discharge seawater desalination: integrating the production of freshwater, salt, magnesium, and bromine, USBR Desalin, Water Purif. Res. Dev. Progr. Rep, (2006).
  151. in: Water Desalination ReporT, www.desalination.com/wdr, 2016, pp. 2.
  152. in: Water Desalination ReporT, www.desalination.com/wdr, 2016, pp. 1–2.
  153. K.W. Lawson, D.R. Lloyd, Membrane distillation, J. Membr. Sci., 124 (1997) 1–25.
  154. G. Meindersma, C. Guijt, A. De Haan, Desalination and water recycling by air gap membrane distillation, Desalination, 187 (2006) 291–301.
  155. From zero to hero – the rise of ZLD, in, Global Water Intelegence, 2016.
  156. A. Efraty, Closed circuit desalination series no-3: High recovery low energy desalination of brackish water by a new twomode consecutive sequential method, Desal. Water Treat., 42 (2012) 256–261.
  157. A. Efraty, Closed circuit desalination series no-4: High recovery low energy desalination of brackish water by a new single stage method without any loss of brine energy, Desal. Water Treat., 42 (2012) 262–268.