References
- A. Kudo, S. Hijii, H2 or O2 evolution from aqueous solutions
on layered oxide photocatalysts consisting of Bi3+ with 6s2 configuration
and d0 transition metal Ions, Chem. Lett., 28 (1999)
1103–1104.
- Z.J. Zhang, W.Z. Wang, M. Shang, W.Z. Yin, Low-temperature
combustion synthesis of Bi2WO6 nanoparticles as a visible-light-driven photocatalyst, J. Hazard. Mater., 177 (2010)
1013–1018.
- Y. Geng, P. Zhang, S. Kuang, Fabrication and enhanced visible-light photocatalytic activities of BiVO4/Bi2WO6 composites,
RSC Adv., 4 (2014) 46054–46059.
- B. Liu, Z. Wang, S. Zhou, J. He, Synthesis and characterization
of a novel BiVO4/SiO2 nanocomposites, Mater. Lett., 160 (2015)
218–221.
- A.K. Geim, Graphene: status and prospects, Science, 324 (2009)
1530–1534.
- K.E. Tettey, M.Q. Yee, D. Lee, Photocatalytic and conductive
MWCNT/TiO2 nanocomposite thin films, ACS Appl. Mater.
Interf., 2 (2010) 2646–2652.
- X. Lu, W.L. Yim, B.H.R. Suryanto, C. Zhao, Electrocatalytic
oxygen evolution at surface-oxidized multiwall carbon nanotubes,
J. Am. Chem. Soc., 137 (2015) 2901–2907.
- J. Wang, Y. Lin, M. Pinault, A. Filoramo, M. Fabert, B. Ratier, J.
Boucle, N.H. Boime, Single-step preparation of TiO2/MWCNT
nanohybrid materials by laser pyrolysis and application to efficient
photovoltaic energy conversion, ACS Appl. Mater. Interf.,
7 (2015) 51–56.
- W. Wang, P. Serp, P. Kalck, J.L. Faria, Photocatalytic degradation
of phenol on MWNT and titania composite catalysts prepared
by a modified sol-gel method, Appl. Catal. B: Environ.,
56 (2005) 305–312.
- S.H.S. Zein, A.R. Boccaccini, Synthesis and characterization
of TiO2 coated multiwalled carbon nanotubes using a sol gel
method, Ind. Eng. Chem. Res., 47 (2008) 6598–6606.
- C.H. Wu, C.Y. Kuo, S.T. Chen, Synergistic effects between TiO2
and carbon nanotubes (CNTs) in TiO2/CNTs system under
visible light irradiation, Environ. Technol., 34 (2013) 2513–
2519.
- J. Lv, D. Li, K. Dai, C. Liang, D. Jiang, L. Lu, G. Zhu, Multiwalled
carbon nanotube supported CdS-DETA nanocomposite
for efficient visible light photocatalysis, Mater. Chem. Phys.,
186 (2017) 372–381.
- J. Di, M. Ji, J. Xia, X. Li, W. Fan, Q. Zhang, H. Li, Bi4O5Br2
ultrasmall nanosheets in situ strong coupling to MWCNT
and improved photocatalytic activity for tetracycline hydrochloride
degradation, J. Mol. Catal. A: Chem., 424 (2016) 331–341.
- L. Lin, D. Yu, W. Wang, P. Gao, K. Bu, B. Liu, Preparation of
BiVO4Bi2WO6/multi-walled carbon nanotube nanocomposites
for enhancing photocatalytic performance, Mater. Lett.,
185 (2016) 507–510.
- Y. Zhang, D. Ma, J. Wu, Q. Zhang, Y. Xin, N. Bao, One–step
preparation of CNTs/InVO4 hollow nanofibers by electrospinning
and its photocatalytic performance under visible light,
Appl. Surf. Sci., 353 (2015) 1260–1268.
- L. Ge, C. Han, Synthesis of MWNTs/g-C3N4 composite photocatalysts
with efficient visible light photocatalytic hydrogen
evolution activity, Appl. Catal. B: Environ., 117–118 (2012) 268–274.
- L. Yue, S. Wang, G. Shan, W. Wu, L. Qiang, L. Zhu, Novel
MWNTs-Bi2WO6 composites with enhanced simulated solar
photoactivity toward adsorbed and free tetracycline in water,
Appl. Catal. B: Environ., 176–177 (2015) 11–19.
- B. Liu, Z. Li, S. Xu, X. Ren, D. Han, D. Lu, Facile in situ hydrothermal
synthesis of BiVO4/MWCNT nanocomposites as
high performance visible-light driven photocatalysts, J. Phys.
Chem. Solids, 75 (2014) 977–983.
- C.H. Chen, Y.H. Liang, W.D. Zhang, ZnFe2O4/MWCNTs
composite with enhanced photocatalytic activity under visible-
light irradiation, J. Alloy Compd., 501 (2010) 168–172.
- J. Chen, G. Li, Y. Huang, H. Zhang, H. Zhao, T. An, Optimization
synthesis of carbon nanotubes-anatase TiO2 composite
photocatalyst by response surface methodology for photocatalytic
degradation of gaseous styrene, Appl. Catal. B Environ.,
123–124 (2012) 69–77.
- D. Xu, P. Lu, P. Dai, H. Wang, S. Ji, In situ synthesis of multiwalled
carbon nanotubes over LaNiO3 as support of cobalt
nanoclusters catalyst for catalytic applications, J. Phys. Chem.
C., 116 (2012) 3405–3413.
- Y.Y. Li, J.P. Liu, X.T. Huang, J.G. Yu, Carbon-modified Bi2WO6
nanostructures with improved photo catalytic activity under
visible light, Dalton Trans., 39 (2010) 3420–3425.
- S. Murcia-López, J.A. Navío, M.C. Hidalgo, Role of activated
carbon on the increased photocatalytic activity of AC/Bi2WO6
coupled materials, Appl. Catal. A: Gen., 466 (2013) 51–59.
- H. Ma, J. Shen, M. Shi, X. Lu, Z. Li, Y. Long, N. Li, M. Ye,
Significant enhanced performance for Rhodamine B, phenol
and Cr(VI) removal by Bi2WO6 nancomposites via reduced
graphene oxide modification, Appl. Catal. B: Environ., 121–122
(2012) 198–205.
- Y.L. Min, K. Zhang, Y.C. Chen, Y.G. Zhang, Enhanced photocatalytic
performance of Bi2WO6 by graphene supporter as
charge transfer channel, Sep. Purif. Technol., 86 (2012) 98–105.
- Y. Chen, X. Cao, J. Kuang, Z. Chen, J. Chen, B. Lin, The gasphase
photocatalytic mineralization of benzene over visible-light-driven Bi2WO6@C microspheres, Catal. Commun., 12
(2010) 247–250.
- C.H. Wu, Studies of the equilibrium and thermodynamics of
the adsorption of Cu2+ onto as-produced and modified carbon
nanotubes, J. Colloid Interf. Sci., 311 (2007) 338–346.
- C.H. Wu, C.Y. Kuo, J.T. Wu, M.J. Hsu, T.J. Jhang, Photodegradation
of C.I. Reactive Red 2 in the Bi2WO6 system: Determination
of surface characteristics and photocatalytic activities of
Bi2WO6, React. Kinet. Mech. Catal., 117 (2016) 391–404.
- M. Su, C. He, V.K. Sharma, M.A. Asi, D. Xia, X.Z. Li, H. Deng,
Y. Xiong, Mesoporous zinc ferrite: synthesis, characterization,
and photocatalytic activity with H2O2/visible light, J. Hazard.
Mater., 211–212 (2012) 95–103.
- M.S. Gui, W.D. Zhang, Q.X. Su, C.H. Chen, Preparation and
visible light photocatalytic activity of Bi2O3/Bi2WO6 heterojunction
photocatalysts, J. Solid State Chem., 184 (2011) 1977–
1982.
- Z. Zhang, W. Wang, E. Gao, M. Shang, J. Xu, Enhanced photocatalytic
activity of Bi2WO6 with oxygen vacancies by zirconium
doping, J. Hazard. Mater., 196 (2011) 255–262.
- Y. Guo, G. Zhang, H. Gan, Synthesis, characterization and visible
light photocatalytic properties of Bi2WO6/rectorite composites,
J. Colloid Interf. Sci., 369 (2012) 323–329.
- Z. Sun, X. Li, S. Guo, H. Wang, Z. Wu, One-step synthesis of
Cl−-doped Pt(IV)/Bi2WO6 with advanced visible-light photocatalytic
activity for toluene degradation in air, J. Colloid.
Interf. Sci., 412 (2013) 31–38.
- M.S. Gui, W.D. Zhang, Preparation and modification of hierarchical
nanostructured Bi2WO6 with high visible light-induced
photocatalytic activity, Nanotechnol., 22 (2011) 265601.
- S. Bai, H. Liu, J. Sun, Y. Tian, S. Chen, J. Song, R. Luo, D. Li, A.
Chen, C.C. Liu, Improvement of TiO2 photocatalytic properties
under visible light by WO3/TiO2 and MoO3/TiO2 composites,
Appl. Surf. Sci., 338 (2015) 61–68.
- M.H. Ahmed, J.A. Byrne, J.A.D. McLaughlin, A. Elhissi, W.
Ahmed, Comparison between FTIR and XPS characterization of
amino acid glycine adsorption onto diamond-like carbon (DLC)
and silicon doped DLC, Appl. Surf. Sci., 273 (2013) 507–514.
- V. Parry, G. Berthome, J.C. Joud, O. Lemaire, A.A. Franco, XPS
investigations of the proton exchange membrane fuel cell
active layers aging: Characterization of the mitigating role of
an anodic CO contamination on cathode degradation, J. Power
Sources, 196 (2011) 2530–2538.
- Y. Chen, S. Yang, K. Wang, L. Lou, Role of primary active species
and TiO2 surface characteristic in UV-illuminated photodegradation
of Acid Orange 7, J. Photochem. Photobiol. A:
Chem., 172 (2005) 47–54.
- Y. Zhang, C. Shao, X.H. Li, N. Lu, M.Y. Zhang, P. Zhang, X.
Zhang, Y. Liu, Controllable synthesis and enhanced visible
photocatalytic degradation performances of Bi2WO6-carbon
nanofibers heteroarchitectures, J. Sol-Gel Sci. Technol., 70
(2014) 149–158.
- H. Huang, K. Liu, K. Chen, Y. Zhang, Y. Zhang, S. Wang, Ce
and F comodification on the crystal structure and enhanced
photocatalytic activity of Bi2WO6 photocatalyst under visible
light irradiation, J. Phys. Chem. C., 118 (2014) 14379–14387.
- Y. Fu, C. Chang, P. Chen, X. Chu, L. Zhu, Enhanced photocatalytic
performance of boron doped Bi2WO6 nanosheets under
simulated solar light irradiation, J. Hazard. Mater., 254–255
(2013) 185–192.