References
- S. Balasubramaniana, Chitosan-Based Polymer Nanocomposites
for Heavy Metal Removal, Nanocomposites in Wastewater
Treatment Pan Stanford Publishing, Pte, 2014.
- D. Humelnicu, M.V. Dinu, E.S. Drăgan, Adsorption characteristics
of UO22+ and Th4+ ions from simulated radioactive solutions
onto chitosan/clinoptilolite sorbents, J. Hazard. Mater.,
185 (2011) 447–455.
- V. Jain, R. Pandya, S. Pillai, P. Shrivastav, Simultaneous preconcentration
of uranium (VI) and thorium (IV) from aqueous
solutions using a chelating calix[4]arene anchored chloromethylated
polystyrene solid phase, Talanta, 70 (2006) 257–266.
- A. Nilchi, T.S. Dehaghan, S.R. Garmarodi, Kinetics, isotherm
and thermodynamics for uranium and thorium ions adsorption
from aqueous solutions by crystalline tin oxide nanoparticles,
Desalination, 321 (2013) 67–71.
- T.P. Rao, P. Metilda, J.M. Gladis, Preconcentration techniques
for uranium (VI) and thorium (IV) prior to analytical determination—
an overview, Talanta, 68 (2006) 1047–1064.
- P. Vijayan, I. Dulera, P. Krishnani, K. Vaze, S. Basu, R. Sinha,
Overview of the thorium programme in India, Thorium
Energy for the World, Springer 2016, pp. 59–69.
- T. Prasada Rao, P. Metilda, J. Mary Gladis, Preconcentration
techniques for uranium (VI) and thorium (IV) prior to analytical
determination: an overview, Talanta, 68 (2006) 1047–1064.
- V. Höllriegl, M. Greiter, A. Giussani, U. Gerstmann, B.
Michalke, P. Roth, U. Oeh, Observation of changes in urinary
excretion of thorium in humans following ingestion of a therapeutic
soil, J. Environ. Radioactiv., (2007) 149–160.
- F.A. Aydin, M. Soylak, A novel multi-element coprecipitation
technique for separation and enrichment of metal ions in environmental
samples, Talanta, 73 (2007) 134–141.
- W.H. Brattain, J.A. Becker, Thermionic and adsorption characteristics
of thorium on tungsten, Phys. Rev., 43 (1933) 428.
- A. Jyothi, G. Rao, Solvent extraction behaviour of lanthanum
(III), cerium (III), europium (III), thorium (IV) and uranium
(VI) with 3-phenyl-4-benzoyl-5-isoxazolone, Talanta, 37 (1990)
431–433.
- K.A. Kraus, G.E. Moore, F. Nelson, Anion-exchange Studies.
XXI. Th (IV) and U (IV) in hydrochloric acid. separation of thorium,
protactinium and uranium 1, 2, J. Amer. Chem. Soc., 78
(1956) 2692–2695.
- Z. Shiri-Yekta, M.R. Yaftian, A. Nilchi, Silica nanoparticles
modified with a Schiff base ligand: an efficient adsorbent for
Th (IV), U (VI) and Eu (III) ions, Korean J. Chem. Eng., 30 (2013)
1644–1651.
- C.W. Sill, C. Willis, Precipitation of submicrogram quantities
of thorium by barium sulfate and application to the fluorometric
determination of thorium in mineralogical and biological
samples, Anal. Chem., 36 (1964) 622–630.
- M. Tsezos, B. Volesky, Biosorption of uranium and thorium,
Biotech. Bioeng., 23 (1981) 583–604.
- D. Zhang, S. Wei, C. Kaila, X. Su, J. Wu, A.B. Karki, D.P. Young,
Z. Guo, Carbon-stabilized iron nanoparticles for environmental
remediation, Nanosca., 2 (2010) 917–919.
- S. Pollard, G. Fowler, C. Sollars, R. Perry, Low-cost adsorbents
for waste and wastewater treatment: a review, Sci. Tot. Environ.,
116 (1992) 31–52.
- A. Rahmati, A. Ghaemi, M. Samadfam, Kinetic and thermodynamic
studies of uranium (VI) adsorption using Amberlite
IRA-910 resin, Annal. Nucl. Ener., 39 (2012) 42–48.
- N.Q. Hien, D. Van Phu, N.N. Duy, H.T. Huy, Radiation grafting
of acrylic acid onto partially deacetylated chitin for metal ion
adsorbent, Nuclear Instrum. Methods Phys. Res. Sec. B: Beam
Interact. Mat. Atom., 236 (2005) 606–610.
- T.S. Anirudhan, S. Rijith, A.R. Tharun, Adsorptive removal of
thorium (IV) from aqueous solutions using poly (methacrylic
acid)-grafted chitosan/bentonite composite matrix: process
design and equilibrium studies, Colloid. Surf. A: Physicochem.
Eng. Asp., 368 (2010) 13–22.
- H. Yi, L.-Q. Wu, W.E. Bentley, R. Ghodssi, G.W. Rubloff, J.N.
Culver, G.F. Payne, Biofabrication with chitosan, Biomacrom.,
6 (2005) 2881–2894.
- D. Mohan, C.U. Pittman, Activated carbons and low cost
adsorbents for remediation of tri-and hexavalent chromium
from water, J. Hazard. Mater., 137 (2006) 762–811.
- M. Saifuddin, P. Kumaran, Removal of heavy metal from
industrial wastewater using chitosan coated oil palm shell
charcoal, Elect. J. Biotechnol., 8 (2005) 43–53.
- C. Gerente, V. Lee, P.L. Cloirec, G. McKay, Application of chitosan
for the removal of metals from wastewaters by adsorption—
mechanisms and models review, Critic. Rev. Environ.
Sci. Technol., 37 (2007) 41–127.
- J. Jordan, K.I. Jacob, R. Tannenbaum, M.A. Sharaf, I. Jasiuk,
Experimental trends in polymer nanocomposites—a review,
Mater. Sci. Eng. A, 393 (2005) 1–11.
- W.W. Ngah, L. Teong, M. Hanafiah, Adsorption of dyes and
heavy metal ions by chitosan composites: A review, Carbohyd.
Polym., 83 (2011) 1446–1456.
- R. Akkaya, U. Ulusoy, Adsorptive features of chitosan
entrapped in polyacrylamide hydrogel for Pb2+, UO22+, and
Th4+, J. Hazard. Mater., 151 (2008) 380–388.
- R.A. Muzzarelli, Potential of chitin/chitosan-bearing materials
for uranium recovery: An interdisciplinary review, Carbohyd.
Polym., 84 (2011) 54–63.
- J.-s. Wang, R.-t. Peng, J.-h. Yang, Y.-c. Liu, X.-j. Hu, Preparation
of ethylenediamine-modified magnetic chitosan complex for
adsorption of uranyl ions, Carbohyd. Polym., 84 (2011) 1169–
1175.
- D. Hritcu, D. Humelnicu, G. Dodi, M.I. Popa, Magnetic chitosan
composite particles: evaluation of thorium and uranyl
ion adsorption from aqueous solutions, Carbohyd. Polym., 87
(2012) 1185–1191.
- K. Ogawa, S. Hirano, T. Miyanishi, T. Yui, T. Watanabe, A new
polymorph of chitosan, Macromolec., 17 (1984) 973–975.
- J. Acharya, J. Sahu, C. Mohanty, B. Meikap, Removal of lead (II)
from wastewater by activated carbon developed from Tamarind
wood by zinc chloride activation, Chem. Eng. J., 149 (2009)
249–262.
- D. Langmuir, J.S. Herman, The mobility of thorium in natural
waters at low temperatures, Geochim. Cosmochim. Acta., 44
(1980) 1753–1766.
- S. Savvin, Analytical use of arsenazo III: determination of thorium,
zirconium, uranium and rare earth elements, Talanta, 8
(1961) 673–685.
- J.F. Corbett, Pseudo first-order kinetics, J. Chem. Educ., 49
(1972) 663.
- F.-C. Wu, R.-L. Tseng, S.-C. Huang, R.-S. Juang, Characteristics
of pseudo-second-order kinetic model for liquid-phase
adsorption: A mini-review, Chem. Eng. J., 151 (2009) 1–9.
- H. Yuh-Shan, Citation review of Lagergren kinetic rate equation
on adsorption reactions, Scientomet., 59 (2004) 171–177.
- B. Hameed, D. Mahmoud, A. Ahmad, Equilibrium modeling
and kinetic studies on the adsorption of basic dye by a low-cost
adsorbent: Coconut (Cocos nucifera) bunch waste, J. Hazard.
Mater., 158 (2008) 65–72.
- Y. Wu, S.-Y. Kim, D. Tozawa, T. Ito, T. Tada, K. Hitomi, E.
Kuraoka, H. Yamazaki, K. Ishii, Equilibrium and kinetic
studies of selective adsorption and separation for strontium
using DtBuCH18C6 loaded resin, J. Nucl. Sci. Techn., 49 (2012)
320–327.
- E. Metwally, T. El-Zakla, R. Ayoub, Thermodynamics study for
the sorption of 134Cs and 60Co radionuclides from aqueous
solutions, J. Nucl. Radiochem. Sci., 9 (2008) 1–6.
- M. Ghasemi, M. Naushad, N. Ghasemi, Y. Khosravi-Fard,
Adsorption of Pb (II) from aqueous solution using new adsorbents
prepared from agricultural waste: adsorption isotherm
and kinetic studies, J. Ind. Eng. Chem., 20 (2014) 2193–2199.
- A. Dada, A. Olalekan, A. Olatunya, O. Dada, Langmuir, Freundlich,
Temkin and Dubinin–Radushkevich isotherms studies
of equilibrium sorption of Zn2+ unto phosphoric acid modified
rice husk, IOSR, J. Appl. Chem., 3 (2012) 38–45.
- P. Ilaiyaraja, A.K.S. Deb, K. Sivasubramanian, D. Ponraju,
B. Venkatraman, Adsorption of uranium from aqueous solution
by PAMAM dendron functionalized styrene divinylbenzene,
J. Hazard. Mater., 250 (2013) 155–166.