References

  1. S. Balasubramaniana, Chitosan-Based Polymer Nanocomposites for Heavy Metal Removal, Nanocomposites in Wastewater Treatment Pan Stanford Publishing, Pte, 2014.
  2. D. Humelnicu, M.V. Dinu, E.S. Drăgan, Adsorption characteristics of UO22+ and Th4+ ions from simulated radioactive solutions onto chitosan/clinoptilolite sorbents, J. Hazard. Mater., 185 (2011) 447–455.
  3. V. Jain, R. Pandya, S. Pillai, P. Shrivastav, Simultaneous preconcentration of uranium (VI) and thorium (IV) from aqueous solutions using a chelating calix[4]arene anchored chloromethylated polystyrene solid phase, Talanta, 70 (2006) 257–266.
  4. A. Nilchi, T.S. Dehaghan, S.R. Garmarodi, Kinetics, isotherm and thermodynamics for uranium and thorium ions adsorption from aqueous solutions by crystalline tin oxide nanoparticles, Desalination, 321 (2013) 67–71.
  5. T.P. Rao, P. Metilda, J.M. Gladis, Preconcentration techniques for uranium (VI) and thorium (IV) prior to analytical determination— an overview, Talanta, 68 (2006) 1047–1064.
  6. P. Vijayan, I. Dulera, P. Krishnani, K. Vaze, S. Basu, R. Sinha, Overview of the thorium programme in India, Thorium Energy for the World, Springer 2016, pp. 59–69.
  7. T. Prasada Rao, P. Metilda, J. Mary Gladis, Preconcentration techniques for uranium (VI) and thorium (IV) prior to analytical determination: an overview, Talanta, 68 (2006) 1047–1064.
  8. V. Höllriegl, M. Greiter, A. Giussani, U. Gerstmann, B. Michalke, P. Roth, U. Oeh, Observation of changes in urinary excretion of thorium in humans following ingestion of a therapeutic soil, J. Environ. Radioactiv., (2007) 149–160.
  9. F.A. Aydin, M. Soylak, A novel multi-element coprecipitation technique for separation and enrichment of metal ions in environmental samples, Talanta, 73 (2007) 134–141.
  10. W.H. Brattain, J.A. Becker, Thermionic and adsorption characteristics of thorium on tungsten, Phys. Rev., 43 (1933) 428.
  11. A. Jyothi, G. Rao, Solvent extraction behaviour of lanthanum (III), cerium (III), europium (III), thorium (IV) and uranium (VI) with 3-phenyl-4-benzoyl-5-isoxazolone, Talanta, 37 (1990) 431–433.
  12. K.A. Kraus, G.E. Moore, F. Nelson, Anion-exchange Studies. XXI. Th (IV) and U (IV) in hydrochloric acid. separation of thorium, protactinium and uranium 1, 2, J. Amer. Chem. Soc., 78 (1956) 2692–2695.
  13. Z. Shiri-Yekta, M.R. Yaftian, A. Nilchi, Silica nanoparticles modified with a Schiff base ligand: an efficient adsorbent for Th (IV), U (VI) and Eu (III) ions, Korean J. Chem. Eng., 30 (2013) 1644–1651.
  14. C.W. Sill, C. Willis, Precipitation of submicrogram quantities of thorium by barium sulfate and application to the fluorometric determination of thorium in mineralogical and biological samples, Anal. Chem., 36 (1964) 622–630.
  15. M. Tsezos, B. Volesky, Biosorption of uranium and thorium, Biotech. Bioeng., 23 (1981) 583–604.
  16. D. Zhang, S. Wei, C. Kaila, X. Su, J. Wu, A.B. Karki, D.P. Young, Z. Guo, Carbon-stabilized iron nanoparticles for environmental remediation, Nanosca., 2 (2010) 917–919.
  17. S. Pollard, G. Fowler, C. Sollars, R. Perry, Low-cost adsorbents for waste and wastewater treatment: a review, Sci. Tot. Environ., 116 (1992) 31–52.
  18. A. Rahmati, A. Ghaemi, M. Samadfam, Kinetic and thermodynamic studies of uranium (VI) adsorption using Amberlite IRA-910 resin, Annal. Nucl. Ener., 39 (2012) 42–48.
  19. N.Q. Hien, D. Van Phu, N.N. Duy, H.T. Huy, Radiation grafting of acrylic acid onto partially deacetylated chitin for metal ion adsorbent, Nuclear Instrum. Methods Phys. Res. Sec. B: Beam Interact. Mat. Atom., 236 (2005) 606–610.
  20. T.S. Anirudhan, S. Rijith, A.R. Tharun, Adsorptive removal of thorium (IV) from aqueous solutions using poly (methacrylic acid)-grafted chitosan/bentonite composite matrix: process design and equilibrium studies, Colloid. Surf. A: Physicochem. Eng. Asp., 368 (2010) 13–22.
  21. H. Yi, L.-Q. Wu, W.E. Bentley, R. Ghodssi, G.W. Rubloff, J.N. Culver, G.F. Payne, Biofabrication with chitosan, Biomacrom., 6 (2005) 2881–2894.
  22. D. Mohan, C.U. Pittman, Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water, J. Hazard. Mater., 137 (2006) 762–811.
  23. M. Saifuddin, P. Kumaran, Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal, Elect. J. Biotechnol., 8 (2005) 43–53.
  24. C. Gerente, V. Lee, P.L. Cloirec, G. McKay, Application of chitosan for the removal of metals from wastewaters by adsorption— mechanisms and models review, Critic. Rev. Environ. Sci. Technol., 37 (2007) 41–127.
  25. J. Jordan, K.I. Jacob, R. Tannenbaum, M.A. Sharaf, I. Jasiuk, Experimental trends in polymer nanocomposites—a review, Mater. Sci. Eng. A, 393 (2005) 1–11.
  26. W.W. Ngah, L. Teong, M. Hanafiah, Adsorption of dyes and heavy metal ions by chitosan composites: A review, Carbohyd. Polym., 83 (2011) 1446–1456.
  27. R. Akkaya, U. Ulusoy, Adsorptive features of chitosan entrapped in polyacrylamide hydrogel for Pb2+, UO22+, and Th4+, J. Hazard. Mater., 151 (2008) 380–388.
  28. R.A. Muzzarelli, Potential of chitin/chitosan-bearing materials for uranium recovery: An interdisciplinary review, Carbohyd. Polym., 84 (2011) 54–63.
  29. J.-s. Wang, R.-t. Peng, J.-h. Yang, Y.-c. Liu, X.-j. Hu, Preparation of ethylenediamine-modified magnetic chitosan complex for adsorption of uranyl ions, Carbohyd. Polym., 84 (2011) 1169– 1175.
  30. D. Hritcu, D. Humelnicu, G. Dodi, M.I. Popa, Magnetic chitosan composite particles: evaluation of thorium and uranyl ion adsorption from aqueous solutions, Carbohyd. Polym., 87 (2012) 1185–1191.
  31. K. Ogawa, S. Hirano, T. Miyanishi, T. Yui, T. Watanabe, A new polymorph of chitosan, Macromolec., 17 (1984) 973–975.
  32. J. Acharya, J. Sahu, C. Mohanty, B. Meikap, Removal of lead (II) from wastewater by activated carbon developed from Tamarind wood by zinc chloride activation, Chem. Eng. J., 149 (2009) 249–262.
  33. D. Langmuir, J.S. Herman, The mobility of thorium in natural waters at low temperatures, Geochim. Cosmochim. Acta., 44 (1980) 1753–1766.
  34. S. Savvin, Analytical use of arsenazo III: determination of thorium, zirconium, uranium and rare earth elements, Talanta, 8 (1961) 673–685.
  35. J.F. Corbett, Pseudo first-order kinetics, J. Chem. Educ., 49 (1972) 663.
  36. F.-C. Wu, R.-L. Tseng, S.-C. Huang, R.-S. Juang, Characteristics of pseudo-second-order kinetic model for liquid-phase adsorption: A mini-review, Chem. Eng. J., 151 (2009) 1–9.
  37. H. Yuh-Shan, Citation review of Lagergren kinetic rate equation on adsorption reactions, Scientomet., 59 (2004) 171–177.
  38. B. Hameed, D. Mahmoud, A. Ahmad, Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: Coconut (Cocos nucifera) bunch waste, J. Hazard. Mater., 158 (2008) 65–72.
  39. Y. Wu, S.-Y. Kim, D. Tozawa, T. Ito, T. Tada, K. Hitomi, E. Kuraoka, H. Yamazaki, K. Ishii, Equilibrium and kinetic studies of selective adsorption and separation for strontium using DtBuCH18C6 loaded resin, J. Nucl. Sci. Techn., 49 (2012) 320–327.
  40. E. Metwally, T. El-Zakla, R. Ayoub, Thermodynamics study for the sorption of 134Cs and 60Co radionuclides from aqueous solutions, J. Nucl. Radiochem. Sci., 9 (2008) 1–6.
  41. M. Ghasemi, M. Naushad, N. Ghasemi, Y. Khosravi-Fard, Adsorption of Pb (II) from aqueous solution using new adsorbents prepared from agricultural waste: adsorption isotherm and kinetic studies, J. Ind. Eng. Chem., 20 (2014) 2193–2199.
  42. A. Dada, A. Olalekan, A. Olatunya, O. Dada, Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk, IOSR, J. Appl. Chem., 3 (2012) 38–45.
  43. P. Ilaiyaraja, A.K.S. Deb, K. Sivasubramanian, D. Ponraju, B. Venkatraman, Adsorption of uranium from aqueous solution by PAMAM dendron functionalized styrene divinylbenzene, J. Hazard. Mater., 250 (2013) 155–166.