References

  1. R.V. Thomann, The future ‘Golden Age’ of predictive models for surface water quality and ecosystem management, J. Environ. Eng., 124 (1998) 94–103.
  2. C.H. Tang, Y.J. Yi, Z.F. Yang, J. Sun, Risk forecasting of pollution accidents based on an integrated Bayesian Network and water quality model for the South to North Water Transfer Project, Ecol. Eng., 96 (2015) 109–116.
  3. X. Wang, J.J. Zhang, V. Babovic, Improving real-time forecasting of water quality indicators with combination of process-based models and data assimilation technique, Ecol. Indic., 66 (2016) 428–439.
  4. W.H. Deng, G.Y. Wang, X.R. Zhang, A novel hybrid water quality time series prediction method based on cloud model and fuzzy forecasting, Chemometr. Intell. Lab. Syst., 149 (2015) 39–49.
  5. H.M. Nagy, M. Watanabe, M. Hirano, Prediction of sediment load concentration in rivers using artificial neural network model, J. Hydraul. Eng., 128 (2002) 588–595.
  6. S.E. Kim, I.W. Seo, Artificial neural network ensemble modeling with conjunctive data clustering for water quality prediction in rivers, J. Hydro-environ. Res., 9 (2015) 325–339.
  7. A. Yan, Z.H. Zou, Y.F. Zhao, Forecasting of dissolved oxygen in the Guanting reservoir using an optimized NGBM (1, 1) model, J. Environ. Sci., 29 (2015) 158–164.
  8. Q. Song, B.S. Chissom, Fuzzy time series and its models, Fuzzy Set. Syst., 54 (1993) 269–277.
  9. Q. Song, B.S. Chissom, Forecasting enrollments with fuzzy time series: Part I, Fuzzy Set. Syst., 54 (1993) 1–10.
  10. Q. Song, B.S. Chissom, Forecasting enrollments with fuzzy time series: Part II, Fuzzy Set. Syst., 62 (1994) 1–8.
  11. J. Sullivan, W.H. Woodall, A comparison of fuzzy forecasting and Markov modeling, Fuzzy Set. Syst., 64 (1994) 279–293.
  12. S.M. Chen, Forecasting enrollments based on high-order fuzzy time series, Cybernet. Syst., 33 (2002) 1–16.
  13. K. Huarng, Heuristic models of fuzzy time series for forecasting, Fuzzy Set. Syst., 123 (2001) 369–386.
  14. L.W. Lee, H. Wang, S.M. Chen, Y.H. Leu, Handling forecasting problems based on two-factor high-order fuzzy time series, IEEE T. Fuzzy Syst., 14 (2006) 468–477.
  15. L.W. Lee, L.H. Wang, S.M. Chen, Temperature prediction and TAIFEX forecasting based on fuzzy logical relationships and genetic algorithm, Expert Syst. Appl., 33 (2007) 539–550.
  16. S. Askari, N. Montazerin, M.H.F. Zarandi, A clustering based forecasting algorithm for multivariable fuzzy time series using linear combinations of independent variables, Appl. Soft Comput., 35 (2015) 151–160.
  17. F.M. Talarposhti, H.J. Sadaei, R. Enayatifar, M. Mahmud, T. Eslami, Stock market forecasting by using a hybrid model of exponential fuzzy time series, Int. J. Approx. Reason., 70 (2015) 79–98.
  18. R.C. Tsaur, T.C. Kuo, The adaptive fuzzy time series model with an application to Taiwan’s tourism demand, Expert Syst. Appl., 38 (2011) 9164–9171.
  19. N.Y. Wang, S.M. Chen, Temperature prediction and TAIFEX forecasting based on automatic clustering techniques and two-factor high-order fuzzy time series, Expert Syst. Appl., 36 (2009) 2143–2154.
  20. C.H. Cheng, Y.S. Chen, Y.L. Wu, Forecasting innovation diffusion of products using trend-weighted fuzzy time-series model, Expert Syst. Appl., 36 (2009) 1826–1832.
  21. C.H. Cheng, T.L. Chen, L.Y. Wei, A hybrid model based on rough sets theory and genetic algorithms for stock price forecasting, Inform. Sciences 180 (2010) 1610–1629.
  22. M.H.F. Zarandi, A. Molladavoudi, A. Hemmati, Fuzzy time series based on defining interval length with Imperialist Competitive Algorithm, Fuzzy Information Processing Society (NAFIPS), 2010 Annual Meeting of the North American, (2010) 1–7.
  23. J.W. Liu, T.L. Chen, C.H. Cheng, Y.H. Chen, Adaptive-expectation based multi-attribute FTS model for forecasting TAIEX, Comput. Math. Appl., 59 (2010) 795–802.
  24. Y. Leu, C.P. Lee, Y.Z. Jou, A distance-based fuzzy time series model for exchange rates forecasting, Expert Syst. Appl., 36 (2009) 8107–8114.
  25. Y.Y. Hsu, S.M. Tse, B. Wu, A new approach of bivariate fuzzy time series analysis to the forecasting of a stock index. International Journal of Uncertainty, Fuzziness Knowledge-Based Syst., 11 (2011) 671–690.
  26. H.L. Wong, Y.H. Tu, C.C. Wang, Application of fuzzy time series models for forecasting the amount of Taiwan export, Expert Syst. Appl., 37 (2010) 1465–1470.
  27. M. Versaci, F.C. Morabito, Fuzzy time series approach for disruption prediction in Tokamak reactors, IEEE T. Magn, 39 (2003) 1503–1506.
  28. L.A. Zadeh, Fuzzy Sets, Inform. Control, 8 (1965) 338–353.
  29. N.B. Chang, H.W. Chen, S.K. Ning, Identification of river water quality using the fuzzy synthetic evaluation approach, J. Environ. Manage., 63 (2001) 293–305.
  30. H. Gharibi, A.H. Mahvi, R. Nabizadeh, H. Arabalibeik, M. Yunesian, M.H. Sowlat, A novel approach in water quality assessment based on fuzzy logic, J. Environ. Manage., 112 (2012) 87–95.
  31. J.S.R. Jang, C.T. Sun, Neuro-fuzzy modeling and control, P. IEEE 83 (1995) 378–406.
  32. S. Karmakar, P.P. Mujumdar, Grey fuzzy optimization model for water quality management of a river system, Adv. Water Resour., 29 (2006) 1088–1105.
  33. C.L. Karr, E.J. Gentry, Fuzzy control of pH using genetic algorithms, IEEE T. Fuzzy Syst., 1 (1993) 46–53.
  34. A. Lermontov, L. Yokoyama, M. Lermontov, M.A.S. Machado, River quality analysis using fuzzy water quality index: Ribeira do Iguape river watershed, Brazil. Ecol. Indic., 9 (2009) 1188– 1197.
  35. X. Ke, C.Y. Wang, D.B. Jing, Y. Zhang, H.J. Zhang, Assessing water quality by ratio of the number of dominant bacterium species between surface/subsurface sediments in Haihe River Basin, Mar. Pollut. Bull., 98 (2015) 267–273.
  36. Y. Qin, D.W. Yang, H.M. Lei, K. Xu, X.Y. Xu, Comparative analysis of drought based on precipitation and soil moisture indices in Haihe basin of North China during the period of 1960–2010, J. Hydrol., 526 (2015) 55–67.
  37. Y. Icaga, Fuzzy evaluation of water quality classification, Ecol. Indic., 7 (2007) 710–718.
  38. W. Ocampo-Duque, N. Ferre-Huguet, J.L. Domingo, M. Schuhmacher, Assessing water quality in rivers with fuzzy inference systems: a case study, Environ. Int., 32 (2006) 733–742.
  39. Z.H. Zou, Y. Yun, J.N. Sun, Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment, J. Environ. Sci., 18 (2006) 1020–1023.
  40. S.H. Cheng, S.M. Chen, W.S. Jian, Fuzzy time series forecasting based on fuzzy logical relationships and similarity measures, Inform. Sciences, 327 (2016) 272–287.
  41. H. Verma, R.K. Agrawal, A. Sharan, An improved intuitionistic fuzzy c-means clustering algorithm incorporating local information for brain image segmentation, Appl. Soft Comput., 46 (2016) 543–557.
  42. L.Q. Li, W.X. Xie, Z.X. Liu, A novel quadrature particle filtering based on fuzzy c-means clustering, Knowledge-Based Syst., 106 (2016) 105–115.
  43. G. Chen, H.W. Qu, A new forecasting method of fuzzy time series model, Control Decis., 28 (2013) 105–114.
  44. G.H. Wang, J. Yao, Forecasting model of fuzzy time series based on K-means algorithm. Acta Anal. Funct. Appl., 17 (2015) 58–65.
  45. X.M. Wang, The grey system analysis and practical application, Huazhong University of Science and Technology Press, Wuhan, China, (2001).
  46. X. Yang, The improved grey prediction GM (1,1) model in MATLAB, Jiangsu Sci. Tech. Inform., 4 (2014) 69–70.