References

  1. A. Roosjen, H.C. van der Mei, H.J. Busscher, W. Norde, Microbial adhesion to poly(ethylene oxide) brushes: influence of polymer chain length and temperature, Langmuir, 20 (2004) 10949–10955.
  2. I. Banerjee, R.C. Pangule, R.S. Kane, Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria and marine organisms, Adv. Mater., 23 (2011) 690–718.
  3. W.G. Characklis, Biofouling - effects and control, in: Proc. International Workshop on Industrial Biofouling and Biocorrosion. Biofouling and Biocorrosion in Industrial Water Systems, 1991, pp. 7–27.
  4. S.E. Coetser, T.E. Cloete, Biofouling and biocorrosion in industrial water systems, Crit. Rev. Microbiol., 31(4) (2005) 213–232.
  5. S. García, A. Trueba, L.M. Vega, E. Madariaga, Impact of the surface roughness of AISI 316L stainless steel on biofilm adhesion in a seawater-cooled tubular heat exchanger-condenser, Biofouling, 32(10) (2016) 1185–1193.
  6. R. Steinhagen, H. Müller-Steinhagen, K. Maani, Problems and costs due to heat exchanger fouling in new zealand industries, Heat Transfer Eng., 14 (1993) 19–30.
  7. H. Müller-Steinhagen, Verminderung der Ablagerungsbildung in Wärmeübertragern, in: VDI-Wärmeatlas 11. ed., Berlin, Heidelberg: Springer, 2013, pp. 91–121.
  8. T.R. Bott, Techniques for reducing the amount of biocide necessary to counteract the effects of biofilm growth in cooling water systems, Appl. Therm. Eng., 18(11) (1998) 1059–1066.
  9. T.R. Bott, Potential physical methods for the control of biofouling in water systems, Chem. Eng. Res. Des., 79 (2001) 484–490.
  10. A. Trueba, S. García, F.M. Otero, L.M. Vega, W. Madariaga, The effect of electromagnetic fields on biofouling in a heat exchange system using seawater, Biofouling, 31(1) (2015) 19–26.
  11. L. Li, Z.Wang, L.C. Rietveld, N. Gao, J. Hu, D. Yin, S. Yu, Comparison of the effects of extracellular and intracellular organic matter extracted from Microcystis aeruginosa on ultrafiltration membrane fouling: dynamics and mechanisms, Environ. Sci. Technol., 48(24) (2014) 14549–14557.
  12. C. Dreiser, L.J. Krätz, H.J. Bart, Kinetics and quantity of crystallization fouling on polymer surfaces: impact of surface characteristics and process conditions, Heat Transfer Eng., 36 (2015) 715–720.
  13. S. Pohl, M. Madzgalla, W. Manz, H.J. Bart, Interaction of E.coli and autochthonous river water microorganisms with polymers in heat transfer applications, in: H. Müller-Steinhagen, H.U. Zettler, Proce. International Conference on Heat Exchanger Fouling and Cleaning XII, Aranjuez/Madrid, Spain, 2017, accepted.
  14. Y.P. Mamunya, V.V. Davydenko, P. Pissis, E.V. Lebedev, Electrical and thermal conductivity of polymers filled with metal powders, Eur. Polym. J., 38 (2002) 1887–1897.
  15. S. Pohl, M. Madzgalla, W. Manz, H.J. Bart, Biofouling on polymeric heat exchanger surfaces with E. coli and native biofilms, Biofouling, 31 (2015) 699–707.
  16. G. Sezonov, D. Joseleau-Petit, R. D’Ari, Escherichia coli physiology in Luria-Bertani broth, J. Bacteriol., 189(23) (2007) 8746– 8749.
  17. C.J. van Oss, R.J. Good, M.K. Chaudhury, The role of van der Waals forces and hydrogen bonds in “hydrophobic interactions” between biopolymers and low energy surfaces, J. Colloid Interface Sci., 111 (1985) 378–390.
  18. R.J. Good, C.J. van Oss, The modern theory of contact angles and the hydrogen bond components of surface energies, in: M.E. Schrader, G.I. Loeb, Modern Approaches to Wettability – Theory and Application, Springer Science+Business Media, New York, 1992.pp. 1–27.
  19. J.D. Berry, M.J. Neeson, R.R. Dagastine, D.Y.C. Chan, R.F. Tabor, Measurement of surface and interfacial tension using pendant drop tensiometry, J. Colloid Interface Sci., 454 (2015) 226–237.
  20. H.J. Busscher, H.C. van der Mei, Use of flow chamber devices and image analysis methods to study microbial adhesion, Methods Enzymol., 253 (1995) 455–476.
  21. S. Pohl, M. Madzgalla, W. Manz, H.J. Bart, E.coli biofilm characteristics on polymeric heat exchanger surfaces, Chem. Eng. Technol., 40(6) (2017) 1017–1024.
  22. R. Bos, H.C. van der Mei, H.J. Busscher, Physico-chemistry of initial microbial adhesive interactions – its mechanisms and methods for study, FEMS Microbiol. Rev., 23 (1999) 179– 230.
  23. H.W. Fowler, A.J. McKay, The measurement of microbial adhesion, in: R.C. Berkeley et al., Microbial adhesion to surfaces, Ellis Horwood Ltd, Chichester, UK, 1980, pp. 141–163.
  24. A.J. García, P. Ducheyne, D. Boettinger, Quantification of cell adhesion using a spinning disk device and application to surface- reactive materials, Biomater., 18 (1997) 1091–1098.
  25. H. Schlichting, K. Gersten, Boundary Layer Theory, 8th ed., Springer, Berlin, Heidelberg, New York, 2000.
  26. M. Förster, Verminderung des Kristallisationsfoulings durch gezielte Beeinflussung der Grenzfläche zwischen Kristallen und Wärmeübertragungsfläche, University Braunschweig: PhD thesis, Cuvillier , Göttingen, 2001.
  27. E. Gaddis, Wärmeübergang und Rührleistung in Rührbehältern, in: VDI-Wärmeatlas, Springer, Berlin, Heidelberg, 2013, pp. 1621–1654.
  28. N.P. Boks, W. Norde, H.C. van der Mei, H.J. Busscher, Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces, Microbiol., 154 (2008) 3122–3133.
  29. R. Baier, Adsorption of Microorganisms to Surfaces, Wiley-Interscience Publishers, New York, 1980.
  30. Q. Zhao, Y. Liu, C. Wang, S. Wang, H. Müller-Steinhagen, Effect of surface free energy on the adhesion of biofouling and crystalline fouling, Chem. Eng. Sci., 60 (2005) 4858–4865.
  31. S. Krishnan, C.J. Weinman, C.K. Ober, Advances in polymers for anti-biofouling surfaces, J. Mater. Chem., 18 (2008) 3405– 3413.
  32. C. Dreiser, Falling Liquid Film Enhancement, Fouling Mitigation and Conceptual Design of Polymer Heat Exchangers, PhD thesis, University Kaiserslautern, 2016.
  33. R. Shang, A.R.D. Verliefde, J. Hu, S.G.J. Heijman, L.C. Rietveld, The impact of EfOM, NOM and cations on phosphate rejection by tight ceramic ultrafiltration, Sep. Purif. Technol., 132 (2014) 289–294.