References
- A. Roosjen, H.C. van der Mei, H.J. Busscher, W. Norde, Microbial
adhesion to poly(ethylene oxide) brushes: influence of
polymer chain length and temperature, Langmuir, 20 (2004)
10949–10955.
- I. Banerjee, R.C. Pangule, R.S. Kane, Antifouling coatings:
recent developments in the design of surfaces that prevent
fouling by proteins, bacteria and marine organisms, Adv.
Mater., 23 (2011) 690–718.
- W.G. Characklis, Biofouling - effects and control, in: Proc.
International Workshop on Industrial Biofouling and Biocorrosion.
Biofouling and Biocorrosion in Industrial Water Systems,
1991, pp. 7–27.
- S.E. Coetser, T.E. Cloete, Biofouling and biocorrosion in industrial
water systems, Crit. Rev. Microbiol., 31(4) (2005) 213–232.
- S. García, A. Trueba, L.M. Vega, E. Madariaga, Impact of the
surface roughness of AISI 316L stainless steel on biofilm adhesion
in a seawater-cooled tubular heat exchanger-condenser,
Biofouling, 32(10) (2016) 1185–1193.
- R. Steinhagen, H. Müller-Steinhagen, K. Maani, Problems and
costs due to heat exchanger fouling in new zealand industries,
Heat Transfer Eng., 14 (1993) 19–30.
- H. Müller-Steinhagen, Verminderung der Ablagerungsbildung
in Wärmeübertragern, in: VDI-Wärmeatlas 11. ed., Berlin,
Heidelberg: Springer, 2013, pp. 91–121.
- T.R. Bott, Techniques for reducing the amount of biocide necessary
to counteract the effects of biofilm growth in cooling
water systems, Appl. Therm. Eng., 18(11) (1998) 1059–1066.
- T.R. Bott, Potential physical methods for the control of biofouling
in water systems, Chem. Eng. Res. Des., 79 (2001)
484–490.
- A. Trueba, S. García, F.M. Otero, L.M. Vega, W. Madariaga,
The effect of electromagnetic fields on biofouling in a heat
exchange system using seawater, Biofouling, 31(1) (2015)
19–26.
- L. Li, Z.Wang, L.C. Rietveld, N. Gao, J. Hu, D. Yin, S. Yu, Comparison
of the effects of extracellular and intracellular organic
matter extracted from Microcystis aeruginosa on ultrafiltration
membrane fouling: dynamics and mechanisms, Environ. Sci.
Technol., 48(24) (2014) 14549–14557.
- C. Dreiser, L.J. Krätz, H.J. Bart, Kinetics and quantity of crystallization
fouling on polymer surfaces: impact of surface
characteristics and process conditions, Heat Transfer Eng., 36
(2015) 715–720.
- S. Pohl, M. Madzgalla, W. Manz, H.J. Bart, Interaction of E.coli
and autochthonous river water microorganisms with polymers
in heat transfer applications, in: H. Müller-Steinhagen, H.U.
Zettler, Proce. International Conference on Heat Exchanger
Fouling and Cleaning XII, Aranjuez/Madrid, Spain, 2017,
accepted.
- Y.P. Mamunya, V.V. Davydenko, P. Pissis, E.V. Lebedev, Electrical
and thermal conductivity of polymers filled with metal
powders, Eur. Polym. J., 38 (2002) 1887–1897.
- S. Pohl, M. Madzgalla, W. Manz, H.J. Bart, Biofouling on polymeric
heat exchanger surfaces with E. coli and native biofilms,
Biofouling, 31 (2015) 699–707.
- G. Sezonov, D. Joseleau-Petit, R. D’Ari, Escherichia coli physiology
in Luria-Bertani broth, J. Bacteriol., 189(23) (2007) 8746–
8749.
- C.J. van Oss, R.J. Good, M.K. Chaudhury, The role of van der
Waals forces and hydrogen bonds in “hydrophobic interactions”
between biopolymers and low energy surfaces, J. Colloid
Interface Sci., 111 (1985) 378–390.
- R.J. Good, C.J. van Oss, The modern theory of contact angles
and the hydrogen bond components of surface energies, in:
M.E. Schrader, G.I. Loeb, Modern Approaches to Wettability
– Theory and Application, Springer Science+Business Media,
New York, 1992.pp. 1–27.
- J.D. Berry, M.J. Neeson, R.R. Dagastine, D.Y.C. Chan, R.F. Tabor,
Measurement of surface and interfacial tension using pendant
drop tensiometry, J. Colloid Interface Sci., 454 (2015) 226–237.
- H.J. Busscher, H.C. van der Mei, Use of flow chamber devices
and image analysis methods to study microbial adhesion,
Methods Enzymol., 253 (1995) 455–476.
- S. Pohl, M. Madzgalla, W. Manz, H.J. Bart, E.coli biofilm characteristics
on polymeric heat exchanger surfaces, Chem. Eng.
Technol., 40(6) (2017) 1017–1024.
- R. Bos, H.C. van der Mei, H.J. Busscher, Physico-chemistry
of initial microbial adhesive interactions – its mechanisms
and methods for study, FEMS Microbiol. Rev., 23 (1999) 179–
230.
- H.W. Fowler, A.J. McKay, The measurement of microbial adhesion,
in: R.C. Berkeley et al., Microbial adhesion to surfaces,
Ellis Horwood Ltd, Chichester, UK, 1980, pp. 141–163.
- A.J. García, P. Ducheyne, D. Boettinger, Quantification of cell
adhesion using a spinning disk device and application to surface-
reactive materials, Biomater., 18 (1997) 1091–1098.
- H. Schlichting, K. Gersten, Boundary Layer Theory, 8th ed.,
Springer, Berlin, Heidelberg, New York, 2000.
- M. Förster, Verminderung des Kristallisationsfoulings durch
gezielte Beeinflussung der Grenzfläche zwischen Kristallen
und Wärmeübertragungsfläche, University Braunschweig:
PhD thesis, Cuvillier , Göttingen, 2001.
- E. Gaddis, Wärmeübergang und Rührleistung in Rührbehältern,
in: VDI-Wärmeatlas, Springer, Berlin, Heidelberg, 2013,
pp. 1621–1654.
- N.P. Boks, W. Norde, H.C. van der Mei, H.J. Busscher, Forces
involved in bacterial adhesion to hydrophilic and hydrophobic
surfaces, Microbiol., 154 (2008) 3122–3133.
- R. Baier, Adsorption of Microorganisms to Surfaces, Wiley-Interscience
Publishers, New York, 1980.
- Q. Zhao, Y. Liu, C. Wang, S. Wang, H. Müller-Steinhagen,
Effect of surface free energy on the adhesion of biofouling and
crystalline fouling, Chem. Eng. Sci., 60 (2005) 4858–4865.
- S. Krishnan, C.J. Weinman, C.K. Ober, Advances in polymers
for anti-biofouling surfaces, J. Mater. Chem., 18 (2008) 3405–
3413.
- C. Dreiser, Falling Liquid Film Enhancement, Fouling Mitigation
and Conceptual Design of Polymer Heat Exchangers, PhD
thesis, University Kaiserslautern, 2016.
- R. Shang, A.R.D. Verliefde, J. Hu, S.G.J. Heijman, L.C. Rietveld,
The impact of EfOM, NOM and cations on phosphate rejection
by tight ceramic ultrafiltration, Sep. Purif. Technol., 132 (2014)
289–294.