References
- L. Si, K. Ruixue, S. Lin, L. Sifan, Y. Shuangchun, Study on treatment
methods of phenol in industrial wastewater, Int. J. Sci.
Eng. Res., 4 (2013) 230–232.
- N.A. Yusoff, S.A. Ong, L.N. Ho, Y.S. Wong, W.F. Khalik, Degradation
of phenol through solar-photo catalytic treatment by
zinc oxide in aqueous solution, Desal. Water Treat., 54 (2015)
1621–1628.
- K.S. Bhausaheband S.R. Korake, Review on removal of phenol
from wastewater using low cost adsorbent, Int. J. Sci. Eng.
Tech. Res., 5 (2016) 2249–2253.
- N. Liu, G. Liang, X. Dong, X. Qi, J. Kim, Y. Piao, Stabilized
magnetic enzyme aggregates on graphne oxide for high performance
phenol and bisphenol A removal, Chem. Eng. J., 306
(2016) 1026–1034.
- B. Safont, A.I. Vitas, F.J. Peñas, Isolation and characterization of
phenol degrading bacteria immobilized onto cyclodextrin-hydrogel
particles within a draft tube sputed bed bioreactor, Biochem.
Eng. J., 64 (2012) 69–75.
- A. Banerjee, A.K. Ghoshal, Biodegradation of phenol by calcium
alginate immobilized Bacillus cereus in a packed bed
reactor and determination of the mass transfer correlation, J.
Environ. Chem. Eng., 4 (2016) 1523–1529.
- B. Marrot, A. Barrios-Martinez, P. Moulin, N. Roche, Biodegradation
of high phenol concentration by activated sludge in
an immersed membrane bioreactor, Biochem. Eng. J., 30 (2006)
174–183.
- A.H. Moghaddam, J. Sargolzaei, Biofilm development on normal
and modified surface in a hybrid SBR-based bioreactor, J.
Taiwan Inst. Chem. Eng., 49 (2015) 165–171.
- M.E. Davey, G.A. O’Toole, Microbial biofilms: from ecology to
molecular genetics, Microbiol. Mol. Biol. Rev., 64 (2000) 847–
867.
- R.V. Houdt, C.W. Michiels, Role of bacterial cell surface structures
in Escherichia coli biofilm formation, Res. Microbiol., 156
(2005) 626–33.
- L.H. Stoodley, P. Stoodley, Biofilm formation and dispersal and
the transmission of human pathogens, Trends Microbiol., 13
(2005) 7–10.
- R. Pishgar, G. Najafpour, B. Navayi, N. Mousavi, Z. Bakhshi,
Biodegradtion of phenol: Comparative study of free and
immobilized growth. Iranica J. Energy Environ., 4 (2011)
348–355.
- S. Deyand, S. Mukherjee, Kinetic studies for an aerobic packed
bed biofilm reactor for treatment of organic wastewater with
and without phenol, J. Water Resour. Protection, 2 (2010)
731–738.
- G. Tziotzios, M. Teliou, V. Kaltsouni, G. Lyberatos, D.V. Vayenas,
Biological phenol removal using suspended growth and
packed bed reactors. Biochem. Eng. J., 26 (2005) 65–71.2005.
- K. Yetilmezsoy, A new empirical model for the determination
of the required retention time in hindered settling. Fresen.
Environ. Bull., 16 (2007) 674–684.
- APHA, Standard Methods for the Examination of Water
and Wastewater, 17th ed. Washington, DC: America Public
Health Association, 1989.
- B.E. Rittmann, L. Crawford, C.K. Tuck, E. Namkung, In situ
determination of kinetic parameters for biofilms: isolation and
characterization of oligotrophic biofilms. Biotechnol. Bioeng.,
28 (1986)1753–1760.
- E. Debik, T. Coskun, Use of the static granular bed reactor
(SGBR) with anaerobic sludge to treat poultry slaughterhouse
wastewater and kinetic modeling, Bioresour. Technol., 100
(2009) 2777–2782.
- M.T. Jafarzadeh, N. Mehrdadi, S.J. Hashemian, Kinetic constants
of anaerobic hybrid reactor treating petrochemical
waste, Asian J. Chem., 21 (2009) 1672–1684.
- J.W. Lim, C.E. Seng, P.E. Lim, S.L. Ng, A.N.A. Sujari, Nitrogen
removal in moving bed sequencing batch reactor using
polyurethane foam cubes of various sizes as carrier materials,
Bioresour. Technol., 102 (2011) 9876–9883.
- P.M. van Schie, L.Y. Young, Biodegradation of phenol: Mechanisms
and Applications, Biorem. J., 4 (2000) 1–18.
- V. Sridevi, M.V.V.C. Lakshmi, M. Manasa, M. Sravani, Metabolic
pathways for the biodegradation of phenol, Int. J. Eng. Sci
Adv. Tech., 2 (2012) 695–705.
- Y. Comeau, in M. Henxe, C.M. van Loosdrecht, G.A. Ekama,
D. Brdjanovic, Biological Wastewater Treatment: Principles,
Modeling and Design, IWA Publising, London 2008, pp: 9–30.
- C.K. Lim, A. Aris, C.H. Neoh, C.Y. Lam, Z.A. Majid, Z. Ibrahim,
Evaluation of macro composite based sequencing batch
biofilm reactor (MC-SBBR) for decolorization and biodegradation
of azo dye acid orang 7, Int. Biodeterior. Biodegradation,
87 (2014) 9–17.
- R.H. Toh, P.E. Lim, C.E. Seng, R. Adnan, Immobilized acclimated
biomass-powdered activated carbon for the bioregeneration
of granular activated carbon loaded with phenol and
o-cresol, Bioresour. Technol., 143 (2013) 265–274.
- Ö. Aktaş, F. Çeçen, Bioregeneration of activated carbon: a
review, Int. Biodeterior. Biodegradation., 59 (2007) 257–272.
- A. Dabrowski, P. Podkoscielny, Z. Hubicki, M. Barczak,
Adsorption of phenolic compounds by activated carbon-a critical
review, Chemosphere, 58 (2005) 1049–1070.
- M. Pandian, H.H. NGO, S. Pazhaniappan, Substrate removal
kinetics of an anaerobic hybrid reactor treating pharmaceutical
wastewater, J. Water Sustain., 1 (2011) 301–312.
- N. Bűyűkkamaci, A. Filibeli, Determination of kinetic constant
of an anaerobic hybrid reactor, Process Biochem., 38 (2002)
73–79.
- R.C. Jin, P. Zheng, Kinetics of nitrogen removal in high rate
anammox up flow filter, J. Hazard. Mater., 170 (2009) 652–656.
- G.C. Okpokwasili, C.O. Nweke, Microbial growth and substrate
utilization kinetics,Afican. J. Biotech., 5 (2005) 305–317.
- P. Bhunia, M.M. Ghrangrekar, Analysis, evaluation, and optimization
of kinetic parameters for performance appraisal and
design of UASB reactors. Bioresour. Technol., 99 (2008) 2132–2140.
- I. Karapinar-Kaplan, A. Aslan, Application of the Stiver-Kincannon
kinetic model to nitrogen removal by Chlorella
vulgaris in a continuously operated immobilized photo
bioreactor system, J. Chem. Technol. Biotechnol., 83 (2008)
998–1005.
- K. Yetilmezsoy, Z. Sapci-Zengin, Stochastic modeling applications
for the prediction of COD removal efficiency of UASB
reactors treating diluted real cotton textile wastewater, Stochastic
Environ. Res. Risk Asses., 23 (2009) 13–26.
- F.I. Turkdogan-Aydinol, K. Yetilmezsoy, S. Comez, H. Bayhan,
Performances evaluation and kinetic modeling of the start–up
of a UASB reactor treating municipal wastewater at low temperature,
Bioprocess Biosyst. Eng., 34 (2010) 153–62.
- P. Grau, M. Dohanyos, M. Chudoba, Kinetics of multicomponent
substrate removal by activated sludge, Water Res., 9
(1975) 637–642.
- E. Sanchez, R. Borja, P. Weilant, L. Travieso, Effect of substrate
concentration and temperature on the anaerobic digestion of
piggery waste in a tropical climate, Process Biochem., 37 (2001)
335–344.