References

  1. L. Si, K. Ruixue, S. Lin, L. Sifan, Y. Shuangchun, Study on treatment methods of phenol in industrial wastewater, Int. J. Sci. Eng. Res., 4 (2013) 230–232.
  2. N.A. Yusoff, S.A. Ong, L.N. Ho, Y.S. Wong, W.F. Khalik, Degradation of phenol through solar-photo catalytic treatment by zinc oxide in aqueous solution, Desal. Water Treat., 54 (2015) 1621–1628.
  3. K.S. Bhausaheband S.R. Korake, Review on removal of phenol from wastewater using low cost adsorbent, Int. J. Sci. Eng. Tech. Res., 5 (2016) 2249–2253.
  4. N. Liu, G. Liang, X. Dong, X. Qi, J. Kim, Y. Piao, Stabilized magnetic enzyme aggregates on graphne oxide for high performance phenol and bisphenol A removal, Chem. Eng. J., 306 (2016) 1026–1034.
  5. B. Safont, A.I. Vitas, F.J. Peñas, Isolation and characterization of phenol degrading bacteria immobilized onto cyclodextrin-hydrogel particles within a draft tube sputed bed bioreactor, Biochem. Eng. J., 64 (2012) 69–75.
  6. A. Banerjee, A.K. Ghoshal, Biodegradation of phenol by calcium alginate immobilized Bacillus cereus in a packed bed reactor and determination of the mass transfer correlation, J. Environ. Chem. Eng., 4 (2016) 1523–1529.
  7. B. Marrot, A. Barrios-Martinez, P. Moulin, N. Roche, Biodegradation of high phenol concentration by activated sludge in an immersed membrane bioreactor, Biochem. Eng. J., 30 (2006) 174–183.
  8. A.H. Moghaddam, J. Sargolzaei, Biofilm development on normal and modified surface in a hybrid SBR-based bioreactor, J. Taiwan Inst. Chem. Eng., 49 (2015) 165–171.
  9. M.E. Davey, G.A. O’Toole, Microbial biofilms: from ecology to molecular genetics, Microbiol. Mol. Biol. Rev., 64 (2000) 847– 867.
  10. R.V. Houdt, C.W. Michiels, Role of bacterial cell surface structures in Escherichia coli biofilm formation, Res. Microbiol., 156 (2005) 626–33.
  11. L.H. Stoodley, P. Stoodley, Biofilm formation and dispersal and the transmission of human pathogens, Trends Microbiol., 13 (2005) 7–10.
  12. R. Pishgar, G. Najafpour, B. Navayi, N. Mousavi, Z. Bakhshi, Biodegradtion of phenol: Comparative study of free and immobilized growth. Iranica J. Energy Environ., 4 (2011) 348–355.
  13. S. Deyand, S. Mukherjee, Kinetic studies for an aerobic packed bed biofilm reactor for treatment of organic wastewater with and without phenol, J. Water Resour. Protection, 2 (2010) 731–738.
  14. G. Tziotzios, M. Teliou, V. Kaltsouni, G. Lyberatos, D.V. Vayenas, Biological phenol removal using suspended growth and packed bed reactors. Biochem. Eng. J., 26 (2005) 65–71.2005.
  15. K. Yetilmezsoy, A new empirical model for the determination of the required retention time in hindered settling. Fresen. Environ. Bull., 16 (2007) 674–684.
  16. APHA, Standard Methods for the Examination of Water and Wastewater, 17th ed. Washington, DC: America Public Health Association, 1989.
  17. B.E. Rittmann, L. Crawford, C.K. Tuck, E. Namkung, In situ determination of kinetic parameters for biofilms: isolation and characterization of oligotrophic biofilms. Biotechnol. Bioeng., 28 (1986)1753–1760.
  18. E. Debik, T. Coskun, Use of the static granular bed reactor (SGBR) with anaerobic sludge to treat poultry slaughterhouse wastewater and kinetic modeling, Bioresour. Technol., 100 (2009) 2777–2782.
  19. M.T. Jafarzadeh, N. Mehrdadi, S.J. Hashemian, Kinetic constants of anaerobic hybrid reactor treating petrochemical waste, Asian J. Chem., 21 (2009) 1672–1684.
  20. J.W. Lim, C.E. Seng, P.E. Lim, S.L. Ng, A.N.A. Sujari, Nitrogen removal in moving bed sequencing batch reactor using polyurethane foam cubes of various sizes as carrier materials, Bioresour. Technol., 102 (2011) 9876–9883.
  21. P.M. van Schie, L.Y. Young, Biodegradation of phenol: Mechanisms and Applications, Biorem. J., 4 (2000) 1–18.
  22. V. Sridevi, M.V.V.C. Lakshmi, M. Manasa, M. Sravani, Metabolic pathways for the biodegradation of phenol, Int. J. Eng. Sci Adv. Tech., 2 (2012) 695–705.
  23. Y. Comeau, in M. Henxe, C.M. van Loosdrecht, G.A. Ekama, D. Brdjanovic, Biological Wastewater Treatment: Principles, Modeling and Design, IWA Publising, London 2008, pp: 9–30.
  24. C.K. Lim, A. Aris, C.H. Neoh, C.Y. Lam, Z.A. Majid, Z. Ibrahim, Evaluation of macro composite based sequencing batch biofilm reactor (MC-SBBR) for decolorization and biodegradation of azo dye acid orang 7, Int. Biodeterior. Biodegradation, 87 (2014) 9–17.
  25. R.H. Toh, P.E. Lim, C.E. Seng, R. Adnan, Immobilized acclimated biomass-powdered activated carbon for the bioregeneration of granular activated carbon loaded with phenol and o-cresol, Bioresour. Technol., 143 (2013) 265–274.
  26. Ö. Aktaş, F. Çeçen, Bioregeneration of activated carbon: a review, Int. Biodeterior. Biodegradation., 59 (2007) 257–272.
  27. A. Dabrowski, P. Podkoscielny, Z. Hubicki, M. Barczak, Adsorption of phenolic compounds by activated carbon-a critical review, Chemosphere, 58 (2005) 1049–1070.
  28. M. Pandian, H.H. NGO, S. Pazhaniappan, Substrate removal kinetics of an anaerobic hybrid reactor treating pharmaceutical wastewater, J. Water Sustain., 1 (2011) 301–312.
  29. N. Bűyűkkamaci, A. Filibeli, Determination of kinetic constant of an anaerobic hybrid reactor, Process Biochem., 38 (2002) 73–79.
  30. R.C. Jin, P. Zheng, Kinetics of nitrogen removal in high rate anammox up flow filter, J. Hazard. Mater., 170 (2009) 652–656.
  31. G.C. Okpokwasili, C.O. Nweke, Microbial growth and substrate utilization kinetics,Afican. J. Biotech., 5 (2005) 305–317.
  32. P. Bhunia, M.M. Ghrangrekar, Analysis, evaluation, and optimization of kinetic parameters for performance appraisal and design of UASB reactors. Bioresour. Technol., 99 (2008) 2132–2140.
  33. I. Karapinar-Kaplan, A. Aslan, Application of the Stiver-Kincannon kinetic model to nitrogen removal by Chlorella vulgaris in a continuously operated immobilized photo bioreactor system, J. Chem. Technol. Biotechnol., 83 (2008) 998–1005.
  34. K. Yetilmezsoy, Z. Sapci-Zengin, Stochastic modeling applications for the prediction of COD removal efficiency of UASB reactors treating diluted real cotton textile wastewater, Stochastic Environ. Res. Risk Asses., 23 (2009) 13–26.
  35. F.I. Turkdogan-Aydinol, K. Yetilmezsoy, S. Comez, H. Bayhan, Performances evaluation and kinetic modeling of the start–up of a UASB reactor treating municipal wastewater at low temperature, Bioprocess Biosyst. Eng., 34 (2010) 153–62.
  36. P. Grau, M. Dohanyos, M. Chudoba, Kinetics of multicomponent substrate removal by activated sludge, Water Res., 9 (1975) 637–642.
  37. E. Sanchez, R. Borja, P. Weilant, L. Travieso, Effect of substrate concentration and temperature on the anaerobic digestion of piggery waste in a tropical climate, Process Biochem., 37 (2001) 335–344.