References

  1. K. Mahmud, M.D. Hossain, S. Shams, Different treatment strategies for highly polluted landfill leachate in developing countries, Waste Manage., 32 (2012) 2096–2105.
  2. E. Turro, A. Giannis, R. Cossu, E. Gidarakos, D. Mantzavinos, A. Katsaounis, Electrochemical oxidation of stabilized landfill leachate on DSA electrodes, J. Hazard. Mater., 190 (2011) 460–465.
  3. A. Fernandes, P. Spranger, A.D. Fonseca, M.J. Pacheco, L. Ciríaco, A. Lopes, Effect of electrochemical treatments on the biodegradability of sanitary landfill leachates, Appl. Catal. B, 144 (2014) 514–520.
  4. X.-Y. Xu, G.-M. Zeng, Y.-R. Peng, Z. Zeng, Potassium persulfate promoted catalytic wet oxidation of fulvic acid as a model organic compound in landfill leachate with activated carbon, Chem. Eng. J., 200–202 (2012) 25–31.
  5. P. Wang, G. Zeng, Y. Peng, F. Liu, C. Zhang, B. Huang, Z. Yu, Y. He, M. Lai, 2,4,6-Trichlorophenol-promoted catalytic wet oxidation of humic substances and stabilized landfill leachate, Chem. Eng. J., 247 (2014) 216–222.
  6. Y.C. Chou, S.L. Lo, J. Kuo, C.J. Yeh, Derivative mechanisms of organic acids in microwave oxidation of landfill leachate, J. Hazard. Mater., 254–255 (2013) 293–300.
  7. M. Chys, V.A. Oloibiri, W.T.M. Audenaert, K. Demeestere, S.W.H. Van Hulle, Ozonation of biologically treated landfill leachate: efficiency and insights in organic conversions, Chem. Eng. J., 277 (2015) 104–111.
  8. A. Amiri, M.R. Sabour, Multi-response optimization of Fenton process for applicability assessment in landfill leachate treatment, Waste Manage., 34 (2014) 2528–2536.
  9. T.F. Silva, R. Ferreira, P.A. Soares, D.R. Manenti, A. Fonseca, I. Saraiva, R.A. Boaventura, V.J. Vilar, Insights into solar photo-Fenton reaction parameters in the oxidation of a sanitary landfill leachate at lab-scale, J. Environ. Manage., 164 (2015) 32–40.
  10. A. Anfruns, J. Gabarro, R. Gonzalez-Olmos, S. Puig, M.D. Balaguer, J. Colprim, Coupling anammox and advanced oxidation-based technologies for mature landfill leachate treatment, J. Hazard. Mater., 258–259 (2013) 27–34.
  11. Y. Ji, Y. Fan, K. Liu, D. Kong, J. Lu, Thermo activated persulfate oxidation of antibiotic sulfamethoxazole and structurally related compounds, Water Res., 87 (2015) 1–9.
  12. S. Yang, X. Yang, X. Shao, R. Niu, L. Wang, Activated carbon catalyzed persulfate oxidation of azo dye acid orange 7 at ambient temperature, J Hazard. Mater., 186 (2011) 659–666.
  13. J. Sharma, I.M. Mishra, D.D. Dionysiou, V. Kumar, Oxidative removal of Bisphenol A by UV-C/peroxy mono sulfate (PMS): Kinetics, influence of co-existing chemicals and degradation pathway, Chem. Eng. J., 276 (2015) 193–204.
  14. Y.C. Chou, S.L. Lo, J. Kuo, C.J. Yeh, A study on microwave oxidation of landfill leachate--contributions of microwave-specific effects, J. Hazard. Mater., 246–247 (2013) 79–86.
  15. Y.C. Chou, S.L. Lo, J. Kuo, C.J. Yeh, Microwave-enhanced persulfate oxidation to treat mature landfill leachate, J. Hazard. Mater., 284 (2015) 83–91.
  16. Y. Fan, Y. Ji, D. Kong, J. Lu, Q. Zhou, Kinetic and mechanistic investigations of the degradation of sulfamethazine in heat-activated persulfate oxidation process, J. Hazard. Mater., 300 (2015) 39–47.
  17. I. Epold, N. Dulova, Oxidative degradation of levofloxacin in aqueous solution by S2O82−/Fe2+, S2O82−/H2O2 and S2O82−/OH processes: A comparative study, J. Environ. Chem. Eng., 3 (2015) 1207–1214.
  18. F. Fu, D.D. Dionysiou, H. Liu, The use of zero-valent iron for groundwater remediation and wastewater treatment: a review, J. Hazard. Mater., 267 (2014) 194–205.
  19. D.-L. Huang, G.-M. Chen, G.-M. Zeng, P. Xu, M. Yan, C. Lai, C. Zhang, N.-J. Li, M. Cheng, X.-X. He, Y. He, Synthesis and Application of Modified Zero-Valent Iron Nano particles for Removal of Hexavalent Chromium from Wastewater, Water Air Soil Pollut., 226 (2015).
  20. M. Nilsson, L. Andreas, A. Lagerkvist, Effect of accelerated carbonation and zero valent iron on metal leaching from bottom ash, Waste Manage., 51 (2016) 97–104.
  21. A.A. And, P.G. Tratnyek, Reduction of nitro aromatic compounds by zero-valent iron metal, Environ. Sci. Technol., 30 (1995) 153–160.
  22. S.Y. Oh, H.W. Kim, J.M. Park, H.S. Park, C. Yoon, Oxidation of polyvinyl alcohol by persulfate activated with heat, Fe2+, and zero-valent iron, J. Hazard. Mater., 168 (2009) 346–351.
  23. C. Liang, C.J. Bruell, M.C. Marley, K.L. Sperry, Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple, Chemosphere, 55 (2004) 1213–1223.
  24. S.Y. Oh, S.G. Kang, P.C. Chiu, Degradation of 2,4-dinitrotoluene by persulfate activated with zero-valent iron, The Sci. Total Environ., 408 (2010) 3464–3468.
  25. H. Zhang, Z. Wang, C. Liu, Y. Guo, N. Shan, C. Meng, L. Sun, Removal of COD from landfill leachate by an electro/Fe2+/peroxydisulfate process, Chem. Eng. J., 250 (2014) 76–82.
  26. J. Zeng, L. Hu, X. Tan, C. He, Z. He, W. Pan, Y. Hou, D. Shu, Elimination of methyl mercaptan in ZVI-S2O82− system activated with in-situ generated ferrous ions from zero valent iron, Catal. Today, 281 (2017) 520–526.
  27. A. Ahmad, X. Gu, L. Li, S. Lu, Y. Xu, X. Guo, Effects of pH and anions on the generation of reactive oxygen species (ROS) in nZVI-rGo-activated persulfate system, Water Air Soil Pollut., 226 (2015) 369–381.
  28. K.-C. Huang, R.A. Couttenye, G.E. Hoag, Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE), Soil Sediment Contam., 11 (2002) 447–448.
  29. A. Romero, A. Santos, F. Vicente, C. González, Diuron abatement using activated per-sulphate: Effect of pH, Fe (II) and oxidant dosage, Chem. Eng. J., 162 (2010) 257–265.
  30. J. Zhao, Y. Zhang, X. Quan, S. Chen, Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature, Sep. Purif. Technol., 71 (2010) 302–307.
  31. H. Li, J. Wan, Y. Ma, Y. Wang, M. Huang, Influence of particle size of zero-valent iron and dissolved silica on the reactivity of activated persulfate for degradation of acid orange 7, Chem. Eng. J., 237 (2014) 487–496.
  32. X. Zhao, X. Wei, P. Xia, H. Liu, J. Qu, Removal and transformation characterization of refractory components from biologically treated landfill leachate by Fe2+/NaClO and Fenton oxidation, Sep. Purif. Technol., 116 (2013) 107–113.
  33. Y.P. Chin, G. Aiken, E. O’Loughlin, Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances, Environ. Sci. Technol., 28 (1994) 1853–1858.
  34. G.B.R. Artinger, S. Geyer, P. Fritz, M. Wolf, J.I. Kim Characterization of groundwater humic substances: influence of sedimentary organic carbon, Appl. Geochem., 15 (2000) 97–116.
  35. H.S.S. Ki-Hoon Kang, H. Park, Characterization of humic substances present in landfill leachates with different landfill ages and its implications, Water Res., 36 (2002) 4023–4032.
  36. L. Zhang, A. Li, Y. Lu, L. Yan, S. Zhong, C. Deng, Characterization and removal of dissolved organic matter (DOM) from landfill leachate rejected by nano filtration, Waste Manage., 29 (2009) 1035–1040.
  37. G. Zhang, Y. Jiao, D.J. Lee, Transformation of dissolved organic matters in landfill leachate-bioelectrochemical system, Bioresour. Technol., 191 (2015) 350–354.
  38. Z. Liu, W. Wu, P. Shi, J. Guo, J. Cheng, Characterization of dissolved organic matter in landfill leachate during the combined treatment process of air stripping, Fenton, SBR and coagulation, Waste Manage., 41 (2015) 111–118.
  39. M. Gotić, S. Musić, Mössbauer, FT-IR and FE SEM investigation of iron oxides precipitated from FeSO4 solutions, J. Mol. Struct., 834–836 (2007) 445–453.
  40. I. Grčić, S. Papić, K. Žižek, N. Koprivanac, Zero-valent iron (ZVI) Fenton oxidation of reactive dye wastewater under UV-C and solar irradiation, Chem. Eng. J., 195–196 (2012) 77–90.