References
- H. Wang, J. Zhu, L. Li, Y. Li, H. Lv, Y. Xu, G. Sun, J. Pi, Effects of
Nrf2 deficiency on arsenic metabolism in mice, Toxicol. Appl.
Pharmacol., 337 (2017) 111–119.
- H.J. Sun, S.W. Li, Ch. Li, W.Q. Wang, H.B. Li, L.Q. Ma, Thyrotoxicity
of arsenate and arsenite on juvenile mice at organism,
sub cellular, and gene levels under low exposure, Chemosphere,
186 (2017) 580–587.
- Y. Ji, D. Zhang, R. Pan, L. Xu, G.P. Demopoulos, A novel twostep
co precipitation process using Fe (III) and Al (III) for the
removal and immobilization of arsenate from acidic aqueous
solution, Water Res., 46 (2012) 500–508.
- Y. Sun, G. Zhou, X. Xiong, X. Guan, L. Li, H. Bao, Enhanced
arsenite removal from water by Ti(SO4)2 coagulation, Water
Res., 47 (2013) 4340–4348.
- Y. Wang, J. Duan, W. Li, S. Beecham, D. Mulcahy, Aqueous
arsenite removal by simultaneous ultraviolet photo catalytic
oxidation-coagulation of titanium sulfate, J. Hazard Mater.,
303 (2016) 162–170.
- E. Roy, S. Patra, R. Madhuri, P.K. Sharma, A single solution
for arsenite and arsenate removal from drinking water using
cysteine@ZnS: TiO2 nano particle modified molecularly
imprinted biofouling-resistant filtration membrane, Chem.
Eng. J., 304 (2016) 259–270.
- R.M. Dhoble, P.R. Maddigapu, S.S. Rayalu, A.G. Bhole, A.S.
Dhoble, S.R. Dhoble, Removal of arsenic (III) from water by
magnetic binary oxide particles (MBOP): experimental studies
on fixed bed column, J. Hazard. Mater., 322 (2017) 469–478.
- X. Wang, R. Qu, A.A. Allam, J. Ajarem, Z. Wei, Z. Wang, Impact
of carbon nano tubes on the toxicity of inorganic arsenic [As
(III) and As (V)] to Daphnia magna: the role of certain arsenic
species, Environ. Toxicol. Chem., 35 (2016) 1852–1859.
- G. Zhang, M. Sun, Y. Liu, X. Lang, L. Liu, H. Liu, J. Qu, J. Li, Visible-light induced photo catalytic activity of electro spun-TiO2 in
arsenic (III) oxidation, Appl. Mater. Interfaces, 7 (2015) 511–518.
- J. Garza, I. García, M. Hinojosa, J. Guzmán, V. Rodríguez, L.
Hinojosa, Fe doped TiO2 photo catalyst for the removal of As
(III) under visible radiation and its potential application on the
treatment of As-contaminated groundwater, Mater. Res. Bull.,
73 (2016) 145–152.
- G. Pozan, M. Isleyen, S. Gokcen, Transition metal coated TiO2
nano particles: synthesis, characterization and their photo catalytic
activity, Appl. Catal. B: Environ., 140–141 (2013) 537–545.
- Y. Qin, Y. Li, Z. Tian, Y. Wu, Y. Cui, Efficiently visible-light
driven photo electro catalytic oxidation of As (III) at low positive
biasing using Pt/TiO2 nano tube electrode, Nano scale
Res. Lett., 11 (2016) 2–13.
- L. Ni, T. Kitta, N. Kumagai, B. Ohtani, K. Hashimoto, H. Irie,
Hydrothermal synthesis of visible light-sensitive conduction
band-controlled tungsten-doped titanium dioxide photo catalysts
with copper ion-grafts, J. Ceram. Soc. Jpn., 121 (2013)
563–567.
- X. Guan, J. Du, X. Meng, Y. Sun, B. Sun, Q. Hu, Application of
titanium dioxide in arsenic removal from water: a review, J.
Hazard. Mater., 215–216 (2012) 1–16.
- X. Zhang, G. Zhou, H. Zhang, C. Wu, H. Song, Characterization
and activity of visible light-driven TiO2 photo catalysis
co-doped with nitrogen and lanthanum, Trans. Met. Chem., 36
(2011) 217–222.
- D. Nassoko, Y. Li, H. Wang, J. Li, Y. Zhi, Y. Yu, Nitrogen-doped
TiO2 nano particles by using EDTA as nitrogen source and
soft template: Simple preparation, mesoporous structure, and
photo catalytic activity under visible light, J. Alloys Compd.,
540 (2012) 228–235.
- X. Wang, Ch. Wang, D. Zhang, Sono chemical synthesis and
characterization of Cl–N-codoped TiO2 nano crystallites,
Mater. Lett., 72 (2012) 12–14.
- J. Ananpattarachai, P. Kajitvichyanukul, S. Seraphin, Visible
light absorption ability and photo catalytic oxidation activity
of various interstitial n-doped TiO2 prepared from different
nitrogen dopants, J. Hazard. Mater., 168 (2009) 253–261.
- X. Guan, J. Du, X. Meng, Y. Sun, B. Sun, Q. Hu, Application of
titanium dioxide in arsenic removal from water: A review, J.
Hazard. Mater., 215–216 (2012) 1–16.
- Norma Chilena Oficial, NCh 2083: Water Acute toxicity bioassay
by determination of the inhibition of the mobility of Daphnia
magna or Daphnia pulex (Crustacea, Cladocera), (1999)
1–21.
- Ch. Wu, Ch. Kuo, Ch. Lin, P. Chiu, Preparation of N-TiO2 using
a microwave/sol-gel method and its photo catalytic activity for
bisphenol A under visible-light and sunlight irradiation, Int. J.
Photo energy., (2013) 1–9.
- J. Matos, S. Miralles, A. Ruiz, I. Oller, S. Malato, Development
of TiO2–C photo catalysts for solar treatment of polluted water,
Carbon., 122 (2017) 361–373.
- Y. Niu, M. Xing, J. Zhang, B. Tian, Visible light activated sulfur
and iron co-doped TiO2 photo catalyst for the photo catalytic
degradation of phenol, Catal. Today., 201 (2013) 159–166.
- X. Li, W. Leng, Regenerated dye-sensitized photo catalytic
oxidation of arsenite over nano structured TiO2 films under
visible light in normal aqueous solutions: an insight into the
mechanism by simultaneous, (photo) electrochemical measurements,
J. Phys. Chem. C., 117 (2013) 750−762.
- J. Ryu, W. Choi, Photo catalytic oxidation of arsenite on TiO2:
Understanding the controversial oxidation mechanism involving
super oxides and the effect of alternative electron acceptors,
Environ. Sci. Technol., 40 (2006) 7034–7039.
- A. Samad, M. Furukawa, H. Katsumata, T. Suzuki, S. Kaneco,
Photo catalytic oxidation and simultaneous removal of arsenite
with CuO/ZnO photo catalyst, J. Photochem. Photo biol.
A: Chem., 325 (2016) 97–103.
- S.H. Yoon, J.H. Lee, Oxidation mechanism of As (III) in the
UV/TiO2 system: evidence for a direct hole oxidation mechanism,
Environ. Sci. Technol., 39 (2005) 9695–9701.
- D. Nabi, I. Aslam, I. Qazi, Evaluation of the adsorption potential
of titanium dioxide nano particles for arsenic removal, J.
Environ. Sci., 21 (2009) 402–408.
- L. Chai, M. Yue, J. Yang, Q. Wang, Q. Li, H. Liu, Formation
of tooeleite and the role of direct removal of As (III) from
high-arsenic acid wastewater, J. Hazard. Mater., 320 (2016)
620–627.
- W. He, M. Megharaj, R. Naidu, Toxicity of tri- and penta-valent
arsenic, alone and in combination, to the cladoceran
Daphnia carinata: the influence of microbial transformation
in natural waters, Environ. Geochem. Health., 31(2009) 133–
141.
- W. Fan, J. Ren, X. Li, Ch. Wei, F. Xue, N. Zhang, Bio accumulation
and oxidative stress in Daphnia magna exposed to arsenite
and arsenate, Environ. Toxicol. Chem., 34 (2015) 2629–2635.
- M. Bissen, F. Frimmel, Arsenic - a review. Part 1: occurrence,
toxicity, speciation, mobility, Acta Hydrochim. Hydrobiol., 31
(2003) 9–18.