References

  1. D.Q. Melo, C.B. Vidal, T.C. Medeiros, G.S.C. Raulino, A.D. Luz, M.C. Pinheiro, R.F. Nascimento, Biosorption of metal ions using a low cost modified adsorbent (mauritiaflexuosa): experimental design and mathematical modeling, Environ. Technol., 37 (2016) 2157–2171.
  2. C.B. Vidal, A.B. Santos, R.F. Nascimento, T.J. Bandosz, Reactive adsorption of pharmaceuticals on tin oxide pillared montmorillonite: Effect of visible light exposure, Chem. Eng. J., 259 (2015) 865–875.
  3. C.B. Vidal, M. Seredych, E. Rodríguez-Castellón, R.F. Nascimento, T.J. Bandosz, Effect of nano porous carbon surface chemistry on the removal of endocrine disruptors from water phase, J. Colloid Interface Sci., 449 (2015) 180–191.
  4. G.S.C. Raulino, C.B. Vidal, A.C.A. Lima, D.Q. Melo. J.T. Oliveira, Treatment influence on green coconut shells for removal of metal ions: pilot-scale fixed-bed column, Environ. Technol., 35 (2014) 1711–1720.
  5. D.Q. Melo, C.B. Vidal, G.S.C. Raulino, A.L. Silva, P.B.A. Fechine, S.E. Mazzeto, A.D Luz, C. Luz, R.F. Nascimento, Removal of toxic metal ions using modified lignocellulosic fibers as ecofriendly biosorbents: mathematical modeling and numerical simulation, Int. J. Civ. Environ. Eng., 15 (2015) 14–25.
  6. C.B. Vidal, D.Q. Melo, G.S.C.; Raulino, A.D. Luz, C. Luz. R.F. Nascimento, Multi element adsorption of metal ions using Tururi fibers (Manicaria Saccifera): experiments, mathematical modeling and numerical simulation, Desal. Water Treat., 57 (2016) 9001–9008.
  7. M.S.P. Silva, G.S.C. Raulino, C.B. Vidal, A.C.A. Lima, R.F. Nascimento, Influence of method of preparation of coconut shell green as biosorbent for application in removal of metals in aqueous solutions, Revista DAE. 193 (2013) 66–73.
  8. F.W. Sousa, S.A. Moreira, A.G. Oliveira, R.M. Cavalcante, M.F. Rosa, R.F. Nascimento, The use of green coconut shells as absorbents in the toxic metals, Quim. Nova., 30 (2007) 1153– 1157.
  9. S.A. Moreira, F.W. Sousa, A.G. Oliveira, E.S. Brito. R.F. Nascimento, Metal removal from aqueous solution using cashew bagasse, Quim. Nova., 32 (2009) 1717–1722.
  10. J. Mao, S.W. Won, Y.S. Yun, Development of poly(acrylic acid)-modified bacterial biomass as a high-performance biosorbent for removal of Cd (II) from aqueous solution, Ind. Eng. Chem. Res. 52 (2013) 6446–6452.
  11. www.mma.gov.br/port/conama/legiabre.cfm?codlegi=646 (Accessed July, 2017).
  12. D.Q. Melo, C.B. Vidal, A.L. Silva. R.N.P. Teixeira, G.S.C. Raulino, T.C. Medeiros, P.B.A. Fechine, S.E. Mazzeto, D. Keukeleire, R. F. Nascimento, Removal of Cd2+, Cu2+, Ni2+, and Pb2+ ions from aqueous solutions using Tururi fibers as an adsorbent. J. Appl. Polym. Sci., 133 (2014) 1–12.
  13. S.A. Moreira, D.Q. Melo, A.C.A. Lima, F.W. Sousa, A.G. Oliveira, A.H.B. Oliveira. R.F. Nascimento, Removal of Ni2+, Cu2+, Zn2+, Cd2+ and Pb2+ ions from aqueous solutions using cashew peduncle bagasse as an eco-friendly biosorbent. Desal. Water Treat., 57 (2016) 10462–10475.
  14. V.O. Sousa Neto, D.Q. Melo, T.C. Oliveira, R.N.P. Teixeira. M.A. Araujo-Silva, R.F. Nascimento, Evaluation of new chemically modified coconut shell adsorbents with tannic acid for Cu(II) removal from wastewater. J. Appl. Polym. Sci., 131 (2014) 1–11.
  15. R.F. Nascimento, A.C.A. Lima, C.B Vidal, D.Q. Melo, G.S.C. Raulino, Adsorção: aspectos teóricos e aplicações ambientais, Imprensa Universitária da Universidade Federal do Ceará: Fortaleza, Brazil, 2014.
  16. C.B. Vidal, G.S.C. Raulino, A.L. Barros, A.C.A. Lima, J.P. Ribeiro, M.J.R. Pires, R.F. Nascimento, BTEX removal from aqueous solutions by HDTMA-modified Y zeolite, J. Environ. Manage., 112 (2012) 178–185.
  17. C.B. Vidal, G.S.C. Raulino, A.D. Luz, C. Luz, R F. Nascimento, D. Keukeleire, Experimental and theoretical approach to multicomponent adsorption of selected aromatics on hydrophobically modified zeolite, J. Chem. Eng. Data, 59 (2014) 282–288.
  18. A.M. Cardoso, A. Paprocki, L.S. Ferret. C.M.N.Azevedo. M.J.R. Pires, Synthesis of zeolite Na-P1 under mild conditions using Brazilian coal fly ash and its application in wastewater treatment, Fuel, 139 (2015) 59–67.
  19. A.M. Cardoso, M.B. Horn, L.S. Ferret. C.M.N. Azevedo, M.J. R. Pires, Integrated synthesis of zeolites 4A and Na-P1 using coal fly ash for application in the formulation of detergents and swine wastewater treatment, J. Hazard. Mater., 287 (2015) 69–77.
  20. L. Hu, S. Xie, Q. Wang, S. Liu, L. Xu, Phase selection controlled by sodium ions in the synthesis of FAU/LTA composite zeolite, Sci. Technol. Adv. Mater., 10 (2009) 1–8.
  21. N. Polhemus. Statgraphics Centurion XVII. Stat Point technologies. Inc. 2015.
  22. I. Puigdomenech, Hydra/Medusa Chemical Equilibrium Database and Plotting Software. KTH Royal Institute of Technology. 2004.
  23. X.N. Querol, N. Moreno, J.C. Umana, A. Alastuey, E. Hernandez, A. Lopez-Soler, F. Plana, Synthesis of zeolites from coal fly ash: an overview, Int. J. Coal Geol., 50 (2002) 413–423.
  24. P. Kabwadza-Corner, M.W. Munthali, E. Johan, N. Matsue, Comparative study of copper adsorptivity and selectivity toward zeolites, Am. J. Anal. Chem., 5 (2014) 395–405.
  25. J.C.R.A. Andrade, L.R.D. da Silva, I. Soares, R.E. Romero, Nitrate occluded in zeolite 4A: absorption and leaching of nitrogen in the cultivation of corn, Quím. Nova., 34 (2011) 1562–1568.
  26. R.S. Jimenez, S.M.D. Bosco, W.A. Carvalho, Heavy metals removal from wastewater by the natural zeolite scolecite – temperature and pH influence in single-metal solutions, Quim. Nova, 27 (2004) 734–738.
  27. A.R. Loiola, J.C.R.A. Andrade, J.M. Sasaki, L.R.D. Silva, Structural analysis of zeolite NaA synthesized by a cost-effective hydrothermal method using kaolin and its use as water softener, J. Colloid Interface Sci., 367 (2012) 34–39.
  28. V.J. Inglezakis, M.D. Loizidou, H.P. Grigoropoulou, Equilibrium and kinetic ion exchange studies of Pb2+, Cr3+, Fe3+ and Cu2+ on natural clinoptilolite, Water Res., 36 (2002) 2784–2792.
  29. M.R.T. Abreu, F.C.F. Barros, G.S.C. Raulino, C.P. Moura, R.F. Nascimento, Metal ions removal from synthetic solutions and produced water using activated zeolite, Int. J. Civ. Environ. Eng., 12 (2012) 20–25.
  30. D.O. Cooney, Adsorption Design for Wastewater Treatment. Boca Raton. Florida: CRC Press. 1999.
  31. G.S.C. Raulino, L.S. da Silva, C.B. Vidal, E.S. Almeida, D.Q. Melo, R.F. do Nascimento. Role of surface chemistry and morphology in the reactive adsorption of metal ions on acid modified dry bean pods (phaseolus vulgaris l.) organic polymers, J. Appl. Polym. Sci., 135 (2018) 45879.
  32. S.H. Hasan, P. Srivastavaa, M. Talat, Biosorption of Pb (II) from water using biomass of aeromonashydrophila: Central composite design for optimization of process variables, J. Hazard. Mater., 168 (2009) 1155–1162.
  33. L. Antunes, E. Angioletto, C.R. Melo, M.R. da Rocha, A.C. Madeira, E. Mendes, Evaluation of mechanical properties of dental field sphatic porcelains for metal and zirconia core, Mater. Sci. Forum., 1530 (2012) 727–728.
  34. D.Q. Melo, V.O. Sousa Neto, F.C.F. Barros, G.S.C. Raulino, C.B. Vidal, R.F. Nascimento, Chemical modifications of lignocellulosic materials and their application for removal of cations and anions from aqueous solutions, J. Appl. Polym. Sci., 133 (2015) 1–22.
  35. K.D. Mondale, R.M. Carland, F.F. Aplan, The comparative ion exchange capacities of natural sedimentary and synthetic zeolites, Miner. Eng., 8 (1995) 535–548.
  36. S.R. Shukla, R.S. Pai, Adsorption of Cu (II), Ni (II) and Zn (II) on modified jute fibers, Sep. Purif. Technol., 43 (2005) 1430– 1438.
  37. H.A. Elliott, C.P. Huang, Adsorption characteristics of some Cu (II) complex on aluminosilicates, Water Res. 15 (1981) 849–855.
  38. B.R. Reddy, N. Mirghaffari, I. Gaballah, Removal and recycling of copper from aqueous solutions using treated indian barks, Resour. Conserv. Recycl., 21 (1997) 227–245.