References
- D.Q. Melo, C.B. Vidal, T.C. Medeiros, G.S.C. Raulino, A.D.
Luz, M.C. Pinheiro, R.F. Nascimento, Biosorption of metal
ions using a low cost modified adsorbent (mauritiaflexuosa):
experimental design and mathematical modeling, Environ.
Technol., 37 (2016) 2157–2171.
- C.B. Vidal, A.B. Santos, R.F. Nascimento, T.J. Bandosz, Reactive
adsorption of pharmaceuticals on tin oxide pillared montmorillonite:
Effect of visible light exposure, Chem. Eng. J., 259
(2015) 865–875.
- C.B. Vidal, M. Seredych, E. Rodríguez-Castellón, R.F. Nascimento,
T.J. Bandosz, Effect of nano porous carbon surface
chemistry on the removal of endocrine disruptors from water
phase, J. Colloid Interface Sci., 449 (2015) 180–191.
- G.S.C. Raulino, C.B. Vidal, A.C.A. Lima, D.Q. Melo. J.T. Oliveira,
Treatment influence on green coconut shells for removal of
metal ions: pilot-scale fixed-bed column, Environ. Technol., 35
(2014) 1711–1720.
- D.Q. Melo, C.B. Vidal, G.S.C. Raulino, A.L. Silva, P.B.A. Fechine,
S.E. Mazzeto, A.D Luz, C. Luz, R.F. Nascimento, Removal of
toxic metal ions using modified lignocellulosic fibers as ecofriendly
biosorbents: mathematical modeling and numerical
simulation, Int. J. Civ. Environ. Eng., 15 (2015) 14–25.
- C.B. Vidal, D.Q. Melo, G.S.C.; Raulino, A.D. Luz, C. Luz. R.F.
Nascimento, Multi element adsorption of metal ions using
Tururi fibers (Manicaria Saccifera): experiments, mathematical
modeling and numerical simulation, Desal. Water Treat., 57
(2016) 9001–9008.
- M.S.P. Silva, G.S.C. Raulino, C.B. Vidal, A.C.A. Lima, R.F.
Nascimento, Influence of method of preparation of coconut
shell green as biosorbent for application in removal of metals
in aqueous solutions, Revista DAE. 193 (2013) 66–73.
- F.W. Sousa, S.A. Moreira, A.G. Oliveira, R.M. Cavalcante, M.F.
Rosa, R.F. Nascimento, The use of green coconut shells as
absorbents in the toxic metals, Quim. Nova., 30 (2007) 1153–
1157.
- S.A. Moreira, F.W. Sousa, A.G. Oliveira, E.S. Brito. R.F. Nascimento,
Metal removal from aqueous solution using cashew
bagasse, Quim. Nova., 32 (2009) 1717–1722.
- J. Mao, S.W. Won, Y.S. Yun, Development of poly(acrylic
acid)-modified bacterial biomass as a high-performance biosorbent
for removal of Cd (II) from aqueous solution, Ind. Eng.
Chem. Res. 52 (2013) 6446–6452.
- www.mma.gov.br/port/conama/legiabre.cfm?codlegi=646 (Accessed July, 2017).
- D.Q. Melo, C.B. Vidal, A.L. Silva. R.N.P. Teixeira, G.S.C. Raulino,
T.C. Medeiros, P.B.A. Fechine, S.E. Mazzeto, D. Keukeleire, R.
F. Nascimento, Removal of Cd2+, Cu2+, Ni2+, and Pb2+ ions from
aqueous solutions using Tururi fibers as an adsorbent. J. Appl.
Polym. Sci., 133 (2014) 1–12.
- S.A. Moreira, D.Q. Melo, A.C.A. Lima, F.W. Sousa, A.G.
Oliveira, A.H.B. Oliveira. R.F. Nascimento, Removal of Ni2+,
Cu2+, Zn2+, Cd2+ and Pb2+ ions from aqueous solutions using
cashew peduncle bagasse as an eco-friendly biosorbent. Desal.
Water Treat., 57 (2016) 10462–10475.
- V.O. Sousa Neto, D.Q. Melo, T.C. Oliveira, R.N.P. Teixeira.
M.A. Araujo-Silva, R.F. Nascimento, Evaluation of new chemically
modified coconut shell adsorbents with tannic acid for
Cu(II) removal from wastewater. J. Appl. Polym. Sci., 131
(2014) 1–11.
- R.F. Nascimento, A.C.A. Lima, C.B Vidal, D.Q. Melo, G.S.C.
Raulino, Adsorção: aspectos teóricos e aplicações ambientais,
Imprensa Universitária da Universidade Federal do Ceará:
Fortaleza, Brazil, 2014.
- C.B. Vidal, G.S.C. Raulino, A.L. Barros, A.C.A. Lima, J.P.
Ribeiro, M.J.R. Pires, R.F. Nascimento, BTEX removal from
aqueous solutions by HDTMA-modified Y zeolite, J. Environ.
Manage., 112 (2012) 178–185.
- C.B. Vidal, G.S.C. Raulino, A.D. Luz, C. Luz, R F. Nascimento,
D. Keukeleire, Experimental and theoretical approach to multicomponent
adsorption of selected aromatics on hydrophobically
modified zeolite, J. Chem. Eng. Data, 59 (2014) 282–288.
- A.M. Cardoso, A. Paprocki, L.S. Ferret. C.M.N.Azevedo. M.J.R.
Pires, Synthesis of zeolite Na-P1 under mild conditions using
Brazilian coal fly ash and its application in wastewater treatment,
Fuel, 139 (2015) 59–67.
- A.M. Cardoso, M.B. Horn, L.S. Ferret. C.M.N. Azevedo, M.J.
R. Pires, Integrated synthesis of zeolites 4A and Na-P1 using
coal fly ash for application in the formulation of detergents
and swine wastewater treatment, J. Hazard. Mater., 287 (2015)
69–77.
- L. Hu, S. Xie, Q. Wang, S. Liu, L. Xu, Phase selection controlled
by sodium ions in the synthesis of FAU/LTA composite zeolite,
Sci. Technol. Adv. Mater., 10 (2009) 1–8.
- N. Polhemus. Statgraphics Centurion XVII. Stat Point technologies.
Inc. 2015.
- I. Puigdomenech, Hydra/Medusa Chemical Equilibrium
Database and Plotting Software. KTH Royal Institute of Technology.
2004.
- X.N. Querol, N. Moreno, J.C. Umana, A. Alastuey, E. Hernandez,
A. Lopez-Soler, F. Plana, Synthesis of zeolites from coal fly
ash: an overview, Int. J. Coal Geol., 50 (2002) 413–423.
- P. Kabwadza-Corner, M.W. Munthali, E. Johan, N. Matsue,
Comparative study of copper adsorptivity and selectivity
toward zeolites, Am. J. Anal. Chem., 5 (2014) 395–405.
- J.C.R.A. Andrade, L.R.D. da Silva, I. Soares, R.E. Romero, Nitrate
occluded in zeolite 4A: absorption and leaching of nitrogen in
the cultivation of corn, Quím. Nova., 34 (2011) 1562–1568.
- R.S. Jimenez, S.M.D. Bosco, W.A. Carvalho, Heavy metals
removal from wastewater by the natural zeolite scolecite
– temperature and pH influence in single-metal solutions,
Quim. Nova, 27 (2004) 734–738.
- A.R. Loiola, J.C.R.A. Andrade, J.M. Sasaki, L.R.D. Silva, Structural
analysis of zeolite NaA synthesized by a cost-effective
hydrothermal method using kaolin and its use as water softener,
J. Colloid Interface Sci., 367 (2012) 34–39.
- V.J. Inglezakis, M.D. Loizidou, H.P. Grigoropoulou, Equilibrium
and kinetic ion exchange studies of Pb2+, Cr3+, Fe3+ and
Cu2+ on natural clinoptilolite, Water Res., 36 (2002) 2784–2792.
- M.R.T. Abreu, F.C.F. Barros, G.S.C. Raulino, C.P. Moura, R.F.
Nascimento, Metal ions removal from synthetic solutions and
produced water using activated zeolite, Int. J. Civ. Environ.
Eng., 12 (2012) 20–25.
- D.O. Cooney, Adsorption Design for Wastewater Treatment.
Boca Raton. Florida: CRC Press. 1999.
- G.S.C. Raulino, L.S. da Silva, C.B. Vidal, E.S. Almeida, D.Q.
Melo, R.F. do Nascimento. Role of surface chemistry and morphology
in the reactive adsorption of metal ions on acid modified
dry bean pods (phaseolus vulgaris l.) organic polymers, J.
Appl. Polym. Sci., 135 (2018) 45879.
- S.H. Hasan, P. Srivastavaa, M. Talat, Biosorption of Pb (II) from
water using biomass of aeromonashydrophila: Central composite
design for optimization of process variables, J. Hazard.
Mater., 168 (2009) 1155–1162.
- L. Antunes, E. Angioletto, C.R. Melo, M.R. da Rocha, A.C.
Madeira, E. Mendes, Evaluation of mechanical properties of
dental field sphatic porcelains for metal and zirconia core,
Mater. Sci. Forum., 1530 (2012) 727–728.
- D.Q. Melo, V.O. Sousa Neto, F.C.F. Barros, G.S.C. Raulino, C.B.
Vidal, R.F. Nascimento, Chemical modifications of lignocellulosic
materials and their application for removal of cations and
anions from aqueous solutions, J. Appl. Polym. Sci., 133 (2015)
1–22.
- K.D. Mondale, R.M. Carland, F.F. Aplan, The comparative ion
exchange capacities of natural sedimentary and synthetic zeolites,
Miner. Eng., 8 (1995) 535–548.
- S.R. Shukla, R.S. Pai, Adsorption of Cu (II), Ni (II) and Zn (II)
on modified jute fibers, Sep. Purif. Technol., 43 (2005) 1430–
1438.
- H.A. Elliott, C.P. Huang, Adsorption characteristics of some Cu
(II) complex on aluminosilicates, Water Res. 15 (1981) 849–855.
- B.R. Reddy, N. Mirghaffari, I. Gaballah, Removal and recycling
of copper from aqueous solutions using treated indian barks,
Resour. Conserv. Recycl., 21 (1997) 227–245.