References
- S. Astals, V. Nolla-Ardèvol, J. Mata-Alvarez, Anaerobic
co-digestion of pig manure and crude glycerol at mesophilic
conditions: biogas and digestate, Bioresour. Technol., 110 (2012)
63–70.
- R.Z. Gaur, A.A. Khan, S. Suthar, Effect of thermal pre-treatment
on co-digestion of duckweed (Lemna gibba) and waste activated
sludge on biogas production, Chemosphere, 174 (2017) 754–763.
- Y. Yang, J. Guo, Z. Hu, Impact of nano zero valent iron (NZVI)
on methanogenic activity and population dynamics in anaerobic
digestion, Water Res., 47 (2013) 6790–6800.
- C. Moertelmaier, C. Li, J. Winter, C. Gallert, Fatty acid
metabolism and population dynamics in a wet biowaste
digester during re-start after revision, Bioresour. Technol., 166
(2014) 479–484.
- T. Amani, M. Nosrati, S.M. Mousavi, Response surface
methodology analysis of anaerobic syntrophic degradation of
volatile fatty acids in an upflow anaerobic sludge bed reactor
inoculated with enriched cultures, Biotechnol. Bioprocess Eng.,
17 (2012) 133–144.
- J. Bai, H. Liu, B. Yin, H. Ma, Modeling of enhanced VFAs
production from waste activated sludge by modified ADM1
with improved particle swarm optimization for parameters
estimation, Biochem. Eng. J., 103 (2015) 22–31.
- J. Li, Q. Ban, L. Zhang, A.K. Jha, Syntrophic propionate
degradation in anaerobic digestion: a review, Int. J. Agric. Biol.,
14 (2012) 843–850.
- S. Ahlert, R. Zimmermann, J. Ebling, H. König, Analysis of
propionate-degrading consortia from agricultural biogas
plants, Microbiologyopen, 5 (2016) 1027–1037.
- Q. Ban, J. Li, L. Zhang, Y. Zhang, A.K. Jha, B. Ai, Effect of
propionate concentration on degradation characteristics of a
propionate enriched culture, J. Harbin Inst. Technol., 45 (2013)
43–47.
- T. Narihiro, T. Terada, A. Ohashi, Y. Kamagata, K. Nakamura,
Y. Sekiguchi, Quantitative detection of previously characterized
syntrophic bacteria in anaerobic wastewater treatment systems
by sequence-specific rRNA cleavage method, Water Res.,
46 (2012) 2167–2175.
- A.J.M. Stams, D.Z. Sousa, R. Kleerebezem, C.M. Plugge, Role of
syntrophic microbial communities in high-rate methanogenic
bioreactors, Water Sci. Technol., 66 (2012) 352–362.
- F.A.M. de Bok, C.M. Plugge, A.J.M. Stams, Interspecies electron
transfer in methanogenic propionate degrading consortia,
Water Res., 38 (2004) 1368–1375.
- H.J.H. Harmsen, M.P. Kengen, A.D.L. Akkermans, A.J.M.
Stams, W.M. de Vos, Detection and localization of syntrophic
propionate-oxidizing bacteria in granular sludge by in situ
hybridization using 16S rRNA-based oligonucleotide probes,
Appl. Environ. Microbiol., 62 (1996) 1656–1663.
- T. Lueders, B. Pommerenke, M.W. Friedrich, Stable-isotope
probing of microorganisms thriving at thermodynamic limits:
syntrophic propionate oxidation in flooded soil, Appl. Environ.
Microbiol., 70 (2004) 5778–5786.
- Y. Sekiguchi, Y. Kamagata, K. Nakamura, A. Ohashi, H. Harada,
Fluorescence in situ hybridization using 16S rRNA-targeted
oligonucleotides reveals localization of methanogens and
selected uncultured bacteria in mesophilic and thermophilic
sludge granules, Appl. Environ. Microbiol., 65 (1999) 1280–1288.
- Q. Ban, J. Li, L. Zhang, A.K. Jha, Syntrophic propionate
degradation response to temperature decrease and microbial
community shift in an UASB Reactor, J. Microbiol. Biotechnol.,
23 (2013) 382–389.
- P. Worm, F.G. Fermoso, P.N.L. Lens, C.M. Plugge, Decreased
activity of a propionate degrading community in a UASB
reactor fed with synthetic medium without molybdenum,
tungsten and selenium, Enzyme Microb. Technol., 45 (2009)
139–145.
- D.R. Boone, L.Y. Xun, Effects of pH, temperature, and nutrients
on propionate degradation by a methanogenic enrichment
culture, Appl. Environ. Microbiol., 53 (1987) 1589–1592.
- Q. Ban, J. Li, L. Zhang, A.K. Jha, Y. Zhang, Quantitative analysis
of previously identified propionate-oxidizing bacteria and
methanogens at different temperatures in an UASB reactor
containing propionate as a sole carbon source, Appl. Biochem.
Biotechnol., 171 (2013) 2129–2141.
- H.D. Ariesyady, T. Ito, S. Okabe, Functional bacterial and
archaeal community structures of major trophic groups in a
full-scale anaerobic sludge, Water Res., 41 (2007) 1554–1568.
- Q. Ban, J. Li, L. Zhang, A.K. Jha, N. Loring, Linking performance
with microbial community characteristics in an anaerobic
baffled reactor, Appl. Biochem. Biotechnol., 169 (2013)
1822–1836.
- APHA, Standard Methods for the Examination of Water and
Wastewater, American Public Health Association, 1995.
- Y. Wang, P.Y. Qian, Conservative fragments in bacterial
16S rRNA genes and primer design for 16S ribosomal DNA
amplicons in metagenomic studies, PLoS One, 4 (2009) 1–9.
- L. Lu, D. Xing, N. Ren, Pyrosequencing reveals highly diverse
microbial communities in microbial electrolysis cells involved
in enhanced H2 production from waste activated sludge, Water
Res., 46 (2012) 2425–2434.
- P.A. Crawford, J.R. Crowley, N. Sambandam, B.D. Muegge, E.K.
Costello, M. Hamady, Regulation of myocardial ketone body
metabolism by the gut microbiota during nutrient deprivation,
Proc. Natl. Acad. Sci., 106 (2009) 11276–11281.
- J.G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F.D.
Bushman, E.K. Costello, QIIME allows analysis of highthroughput
community sequencing data, Nat. Methods,
7 (2010) 335–336.
- A.A. Khan, R.Z. Gaur, V.K. Tyagi, B. Lew, V. Diamantis, A.A.
Kazmi, I. Mehrotra, Fecal coliform removal from the effluent
of UASB reactor through diffused aeration, Desal. Wat. Treat.,
39 (2012) 41–44.
- A. Khan, R.Z. Gaur, A.A. Kazmi, B. Lew, Sustainable post
treatment options of anaerobic effluent, In: R. Chamy, F.
Rosenkranz, Biodegradation – Engineering and Technology,
InTech, pp. 191–221.
- J. Zhang, X. Cai, L. Qi, C. Shao, Y. Lin, J. Zhang, Y. Zhang, P.
Shen, Y. Wei, Effects of aeration strategy on the evolution of
dissolved organic matter (DOM) and microbial community
structure during sludge bio-drying, Appl. Microbiol.
Biotechnol., 99 (2015) 7321–7331.
- K. Kundu, I. Bergmann, S. Hahnke, M. Klocke, S. Sharma,
T.R. Sreekrishnan, Carbon source—a strong determination
of microbial community structure and performance of an
anaerobic reactor, J. Biotechnol., 168 (2013) 616–624.
- D. Riviere, V. Desvignes, E. Pelletier, S. Chaussonnerie,
S. Guermazi, J. Weissenbach, T. Li, P. Camacho, A. Sghir,
Towards the definition of a core of microorganisms involved in
anaerobic digestion of sludge, ISME J., 3 (2009) 700–714.
- S.B. Conners, E.F. Mongodin, M.R. Johnson, C.I. Montero,
K.E. Nelson, R.M. Kelly, Microbial biochemistry, physiology,
and biotechnology of hyperthermophilic Thermotoga species,
FEMS Microbiol. Rev., 30 (2006) 872–905.
- L. Bjornsson, P. Hugenholtz, G.W. Tyson, L.L. Blackall,
Filamentous Chloroflexi (green non-sulfur bacteria) are
abundant in wastewater treatment processes with biological
nutrient removal, Microbiology, 148 (2002) 2309–2318.
- S.H. Lee, J.H. Park, S.H. Kim, B.J. Yu, J.J. Yoon, H.D. Park,
Evidence of syntrophic acetate oxidation by Spirochaetes during
anaerobic methane production, Bioresour. Technol., 190 (2015)
543–549.
- Y. Liu, W.B. Whitman, Metabolic, phylogenetic, and ecological
diversity of the methanogenic archaea, Ann. N.Y. Acad. Sci.,
1125 (2008) 171–189.
- C. Wallrabenstein, E. Hauschild, B. Schink, Syntrophobacter
pfennigii sp. nov., new syntrophically propionate-oxidizing
anaerobe growing in pure culture with propionate and sulfate,
Arch. Microbiol., 164 (1995) 346–352.
- H.J.M. Harmsen, B.L.M. van Kuijk, C.M. Plugge, A.D.L.
Akkermans, W.M. de Vos, A.J.M. Stams, Syntrophobacter
fumaroxidans sp. nov., a syntrophic propionate-degrading
sulfate reducing bacterium, Int. J. Syst. Bacteriol., 48 (1998)
1383–1387.
- T. Shigematsu, S. Era, Y. Mizuno, K. Ninomiya, Y. Kamegawa,
S. Morimura, K. Kida, Microbial community of a mesophilic
propionate-degrading methanogenic consortium in chemostat
cultivation analyzed based on 16S rRNA and acetate kinase
genes, Appl. Microbiol. Biotechnol., 72 (2006) 401–415.
- Y. Liu, D.L. Balkwill, H.C. Aldrich, G.R. Drake, D.R. Boone,
Characterization of the anaerobic propionate-degrading
syntrophs Smithella propionica gen. nov., sp. nov. and
Syntrophobacter wolinii, Int. J. Syst. Bacteriol., 49 (1999) 545–556.
- M.J. McInerney, C.G. Struchtemeyer, J. Sieber, H. Mouttaki,
A.J.M. Stams, B. Schink, L. Rohlin, R.P. Gunsalus, Physiology,
ecology, phylogeny, and genomics of microorganisms capable
of syntrophic metabolism, Ann. N.Y. Acad. Sci., 1125 (2008)
58–72.
- M.S. Elshahed, M.J. McInerney, Benzoate fermentation by the
anaerobic bacterium syntrophus aciditrophicus in the absence
of hydrogen-using microorganisms, Appl. Environ. Microbiol.,
67 (2001) 5520–5525.
- M.J. McInerney, L. Rohlin, H. Mouttaki, U. Kim, R.S.
Krupp, L. Rios-Hernandez, J. Sieber, C.G. Struchtemeyer, A.
Bhattacharyya, J.W. Campbell, R.P. Gunsalus, The genome of
Syntrophus aciditrophicus: life at the thermodynamic limit of
microbial growth, Proc. Natl. Acad. Sci., 104 (2007) 7600–7605.
- C. Díaz, S. Baena, M.L. Fardeau, B.K.C. Patel, Aminiphilus
circumscriptus gen. nov., sp. nov., ananaerobic amino-aciddegrading
bacterium from an upflow anaerobic sludge reactor,
Int. J. Syst. Evol. Microbiol., 57 (2007) 1914–1918.
- J.L. DiPippo, C.L. Nesbø, H. Dahle, W.F. Doolittle, N.K. Birkland,
K.M. Noll, Kosmotoga olearia gen. nov., sp. nov., a thermophilic,
anaerobic heterotroph isolated from an oil production fluid, Int.
J. Syst. Evol. Microbiol., 59 (2009) 2991–3000.
- A. Grabowski, B.J. Tindall, V. Bardin, D. Blanchet, C. Jeanthon,
Petrimonas sulfuriphila gen. nov., sp. nov., a mesophilic
fermentative bacterium isolated from a biodegraded oil
reservoir, Int. J. Syst. Evol. Microbiol., 55 (2005)1113–1121.
- H. Shiratori, K. Sasaya, H. Ohiwa, H. Ikeno, S. Ayame,
N. Kataoka, A. Miya, T. Beppu, K. Ueda, Clostridium clariflavum sp. nov. and Clostridium caenicola sp. nov., moderately
thermophilic, cellulose-/cellobiose-digesting bacteria isolated
from methanogenic sludge, Int. J. Syst. Evol. Microbiol.,
59 (2009) 1764–1770.
- Z. Liu, N.U. Frigaard, K. Vogl, T. Iino, M. Ohkuma, J. Overmann,
D.A. Bryant, Complete genome of Ignavibacterium album, a
metabolically versatile, flagellated, facultative anaerobe from
the phylum Chlorobi, Front. Microbiol., 3 (2012) 1–14.
- T. Masahiro, M. Takashi, U. Yoshiyuki, G. Masafumi, S. Koji,
Methanogenesis from acetate and propionate by thermophilic
down-flow anaerobic packed-bed reactor, Bioresour. Technol.,
99 (2008) 4786–4795.
- D. Zheng, L. Raskin, Quantification of Methanosaeta species
in anaerobic bioreactors using genus- and species-specific
hybridization probes, Microb. Ecol., 39 (2000) 246–262.
- M. Keyser, R.C. Witthuhn, C. Lamprecht, M.P.A. Coetzee,
T.J. Britz, PCR-based DGGE fingerprinting and identification
of methanogens detected in three different types of UASB
granules, Syst. Appl. Microbiol., 29 (2006) 77–84.
- S. Uyanik, Granule development in anaerobic baffled reactor,
Turk. J. Environ. Sci. Eng., 27 (2003) 131–144.
- B. Demirel, P. Scherer, The roles of acetotrophic and
hydrogenotrophic methanogens during anaerobic conversion
of biomass methane: a review, Rev. Environ. Sci. Biol., 7 (2008)
173–190.
- Q. Wang, M. Kuninobu, H. Ogawa, Y. Katoa, Degradation of
volatile fatty acids in highly efficient anaerobic digestion,
Biomass Bioenergy, 16 (1999) 407–416.
- J.B. van Lier, K.C.F. Grolle, C.T.M.J. Frijters, A.J.M. Stams,
G. Lettinga, Effects of acetate, propionate, and butyrate on
the thermophilic anaerobic degradation of propionate by
methanogenic sludge and defined cultures, Appl. Environ.
Microbiol., 59 (1993) 1003–1011.