References

  1. H. Marsh, F. Rodríguez-Reinoso, Activated Carbon (Origins), 1st ed., Department of Inorganic Chemistry, University of Alicante, Spain, 2006.
  2. H.R. Hafizi-Atabak, H. Ghanbari-Tuedeshki, A. Shafaroudi, M. Akbari, J. Safaei Ghomi, M. Shariaty-Niassar, Production of activated carbon from cellulose wastes, J. Chem. Pet. Eng., 47 (2013) 13–25.
  3. N.M. Haimour, S. Emeish, Utilization of date stones for production of activated carbon using phosphoric acid, Waste Manage., 26 (2006) 651–660.
  4. B.S. Girgis, A. El-Hendaway, Porosity development in activated carbons obtained from date pits under chemical activation with phosphoric acid, Microporous Mesoporous Mater., 52 (2002) 105–117.
  5. S.-H. Jung, J.S. Kim, Production of biochars by intermediate pyrolysis and activated carbons from oak by three activation methods, J. Anal. Appl. Pyrolysis, 107 (2014) 116–112.
  6. W.C. Lim, C. Srinivasakannan, Activation of pall shells by phosphoric acid impregnation for high yielding activated carbon, J. Anal. Appl. Pyrolysis, 88 (2010) 181–186.
  7. A. Aygün, S. Yenisoy-Karakas, I. Duman, Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties, Microporous Mesoporous Mater., 66 (2003) 189–195.
  8. A. Aworn, P. Thiravetyan, W. Nakbanpote, Preparation and characteristics of agricultural waste activated carbon by physical activation having micro- and mesopores, J. Anal. Appl. Pyrolysis, 82 (2008) 279–285.
  9. M. Kaustubha, M. Jha, B.C. Meikap, M.N. Biswas, Removal of chromium (VI) from dilute aqueous solution by activated carbon developed from Terminalia arjuna nuts activated with zinc chloride, Chem. Eng. Sci., 60 (2005) 3049–3059.
  10. E. Demirbas, M. Kobya, E. Senturk, T. Ozkan, Adsorption kinetics for the removal of chromium (VI) from aqueous solutions on the activated carbons prepared from agricultural wastes, Water SA, 30 (2004) 533–539.
  11. S.M. Al-Aibi, H.B. Mahood, A.O. Sharif, Separation efficiency of glucose and maltose from industrial effluent by granular activated carbon, Iran. J. Chem. Chem. Eng. J., (2016).
  12. S. Al-Aibi, J. Al-Naja, H.B. Mahood, A. Sharif, G. Derwish, Kinetic adsorption study of glucose osmotic agent onto granular activated carbon in SET technique, Int. J. Sci. Res. Chem. Eng., 1 (2014) 34–43.
  13. C.J. Kirubakaran, K. Krrishnaiah, S.K. Seshadri, Experimental study of the production of activated carbon from coconut shell in a fluidized bed reactor, Ind. Eng. Chem. Res., 30 (1991) 2411–2416.
  14. F.L. Ren, C.Y. Tao, Adsorption of Cr(VI) and Speciation of Cr(VI) and Cr(III) in aqueous solutions using chemically modified chitosan, Int. J. Environ. Res. Public Health, 9 (2012) 1757–1770.
  15. X. Hu, H. Zhang, Z. Sun, Adsorption of low concentration ceftazidime from aqueous solutions using impregnated activated carbon promoted by iron, Appl. Surf. Sci., 392 (2017) 332–341.
  16. H. Zhou, C. Wu, X. Huang, M. Gao, X. Wen, H. Tsuno, H. Tanaka, Occurrence of selected pharmaceuticals and caffeine in sewage treatment plants and receiving rivers in Beijing, China, Water Environ. Res., 82 (2010) 2239–2248.
  17. D. Cheng, X. Liu, L. Wang, W. Gong, G. Liu, W. Fu, M. Cheng, Seasonal variation and sediment-water exchange of antibiotics in a shallower large lake in North China, Sci. Total Environ., 476 (2014) 266–275.
  18. J. Xu, Y. Zhang, C. Zhou, C. Guo, D. Wang, P. Du, Y. Luo, J. Wan, W. Meng, Distribution sources and composition of antibiotics in sediment, overlying water and pore water from Taihu Lake, China, Sci. Total Environ., 497 (2014) 267–273.
  19. K. Kümmerer, Antibiotics in the aquatic environment – a review – part I, Chemosphere, 75 (2009) 417–434.
  20. N. Le-Minh, S. Khan, J. Drewes, R. Stuetz, Fate of antibiotics during municipal water recycling treatment processes, Water Res., 44 (2010) 4295–4323.
  21. H.W. Leung, T.B. Minh, M.B. Murphy, C.W. James, M.K. Lam, M. Martin, K.S. Paul Lam, B.J. Richardson, Distribution, fate and risk assessment of antibiotics in sewage treatment plants in Hong Kong, South China, Environ. Int., 42 (2012) 1–9.
  22. L.B. Massey, B.E. Haggard, J.M. Galloway, K.A. Loftin, M.T. Meyerd, W.R. Green, Antibiotic fate and transport in three effluent-dominated Ozark streams, Ecol. Eng., 36 (2010) 930–938.
  23. H. Zhang, P. Liu, Y. Feng, F. Yang, Fate of antibiotics during waste water treatment and antibiotic distribution in the effluentreceiving waters of the Yellow Sea, northern China, Mar. Pollut. Bull., 73 (2013) 282–290.
  24. S. Manzetti, R. Ghisi, The environmental release and fate of antibiotics, Mar. Pollut. Bull., 79 (2014) 7–15.
  25. C.W. Yang, Y.T. Chang, W.L. Chao, I. Shiung, H.S. Lin, H. Chen, S.H. Ho, M.J. Lu, P.H. Lee, S.N. Fan, An investigation of total bacterial communities, culturable antibiotic-resistant bacterial communities and integrons in the river water environments of Taipei city, J. Hazard. Mater., 277 (2014) 159–168.
  26. D.H. Williams, I. Fleming, Spectroscopic Methods in Organic Chemistry, 4th ed., McGraw-Hill Book Company (UK) Limited, 1989.