References
- M. Prado Cechinel, M. Guelli Ulson de Souza, A. Ulson de
Souza, Study of lead (II) adsorption onto activated carbon
originating from cow bone, J. Cleaner Prod., 65 (2015) 342–349.
- G. Issabayeva, M. Kheireddine Aroua, N. Meriam Sulaiman,
Study on palm shell activated carbon adsorption capacity to
remove copper ions from aqueous solutions, Desalination, 262
(2010) 94–98.
- R. Bansal, J. Donnet, F. Stoeckli, Active Carbon, Marcel Dekker
Inc., New York, 1988.
- J.T. Nwabanne, P.K. Igbokwe, Adsorption performance of
packed bed column for the removal of lead (II) using oil palm
fibre, Int. J. Appl. Sci. Technol., 2 (2012) 106–115.
- S. Álvarez Torrellas, R. García Lovera, N. Escalona, C.
Sepúlveda, J.L. Sotelo, J. García, Chemical-activated carbons
from peach stones for the adsorption of emerging contaminants
in aqueous solutions, Chem. Eng. J., 279 (2015) 788–798.
- M.T. Izquierdo, A. Martínez de Yuso, B. Rubio, R. Pino,
Conversion of almond shell to activated carbons: methodical
study of the chemical activation based on an experimental
design and relationship with their characteristics, Biomass
Bioenergy, 35 (2011) 1235–1244.
- R. Baccara, J. Bouzida, M. Fekib, A. Montiela, Preparation
of activated carbon from Tunisian olive-waste cakes and its
application for adsorption of heavy metal ions, J. Hazard.
Mater., 162 (2009) 1522–1529.
- M.F. Sardella, M. Gimenez, C. Navas, C. Morandi, C. Deiana, K.
Sapag, Conversion of viticultural industry wastes into activated
carbons for removal of lead and cadmium, J. Environ. Chem.
Eng., 3 (2015) 253–260.
- L. Oliveira, E. Pereira, J.R. Guimaraes, A. Vallone, M. Pereira,
J. Mesquita, K. Sapag, Preparation of activated carbons from
coffee husks utilizing FeCl3 and ZnCl2 as activating agents, J.
Hazard. Mater., 65 (2009) 87–94.
- C. Deiana, F. Sardella, H. Silva, A. Amaya, N. Tancredi, Use
of grape stalk, a waste of the viticulture industry, to obtain
activated carbon, J. Hazard. Mater., 172 (2009) 13–19.
- F.J. García-Mateos, R. Ruiz-Rosas, M.D. Marqués, L.M.
Cotoruelo, J. Rodríguez-Mirasol, T. Cordero, Removal of
paracetamol on biomass-derived activated carbon: modeling
the fixed bed breakthrough curves using batch adsorption
experiments, Chem. Eng. J., 279 (2015) 18–30.
- ASTM D 2866-94 ASTM Committee on Standards, 1916 Race St.,
Philadelphia, PA, 1994, p. 727.
- ASTM D 2867-95 ASTM Committee on Standards, 1916 Race St.,
Philadelphia, PA, 1995, p. 729.
- ASTM E 872-98 ASTM Committee on Standards, 100 Barr
Harbor Drive, West Conshohocken, PA, 1998, p. 270.
- J. Noh, J. Schwartz, Estimation of the point of zero charge of
simple oxides by mass titration, J. Colloid Interface Sci., 3 (1989)
157–164.
- A.C. Deiana, M. Gimenez, S. Rómoli, M.F. Sardella, K. Sapag,
Batch and column studies for the removal of lead from aqueous
solutions using activated carbons from viticultural industry
wastes, Adsorpt. Sci. Technol., 32 (2014) 181–195.
- S. Lagergren, Zur theorie der sogenannten adsorption geloster
stoffe, K. Sven. Vetensk.akad. Handl., 24 (1898) 1–39.
- Y.S. Ho, G. Mckay, The sorption of lead(II) on peat, Water Res.,
33 (1999) 578–584.
- H. Freundlich, About the adsorption in solutions, Z. Phys.
Chem., 57 (1906) 385–470.
- I. Langmuir, The adsorption of gases on plane surfaces of glass,
mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
- Z. Xu, J. Cai, B. Pan, Mathematically modeling fixed-bed
adsorption in aqueous systems, J. Zhejiang Univ. Sci. A (Appl.
Phys. Eng.), 14 (2013) 155–176.
- G. Yan, T. Viraraghava, M. Chen, A new model for heavy metal
removal in a biosorption column, Adsorpt. Sci. Technol., 19
(2001) 25–43.
- K. Johari, A. Alias, N. Saman, S. Song, Removal performance
of elemental mercury by low-cost adsorbents prepared through
facile methods of carbonization and activation of coconut husk,
Waste Manage. Res., 33 (2015) 81–88.
- P. Brende, R. Gadiou, J.-C. Rietsch, P. Fioux, J. Dentzer, A.
Ponche, C. Vix-Guterl, Characterization of carbon surface
chemistry by combined temperature programmed desorption
with in situ X-ray photoelectron spectrometry and temperature
programmed desorption with mass spectrometry analysis,
Anal. Chem., 84 (2012) 2147−2153.
- J.L. Figueiredo, M.F.R. Pereira, The role of surface chemistry in
catalysis with carbons, Catal. Today, 150 (2010) 2–7.
- L. Giraldo, J.C. Moreno-Piraján, Pb2+ adsorption from aqueous
solutions on activated carbons obtained from lignocellulosic
residues, Braz. J. Chem. Eng., 25 (2008) 143–148.
- W. Tongpoothorn, M. Sriuttha, P. Homchan, S. Chanthai, C.
Ruangviriyachai, Preparation of activated carbon derived from Jatropha curcas shell by simple thermo-chemical activation and
characterization of their physico-chemical properties, Chem.
Eng. Res. Des., 8 (2011) 335–340.
- B. Aceved, C. Barriocanal, Texture and surface chemistry of
activated carbons obtained from tyre wastes, Fuel Process.
Technol., 134 (2015) 275–283.
- A. Puziy, O. Poddubnaya, A. Martinez-Alonso, F. Suarez-García, J. Tascón, Surface chemistry of phosphorus-containing
carbons of lignocellulosic origin, Carbon, 43 (2005) 2857–2868.
- M. Machida, T. Mochimaru, H. Tatsumoto, Lead(II) adsorption
onto graphene layer of carbonaceous materials in aqueous
solution, Carbon, 44 (2006) 2681–2688.
- M. Abbas, S. Kaddourb, M. Trari, Kinetic and equilibrium
studies of cobalt adsorption on apricot stone activated carbon, J.
Ind. Eng. Chem., 20 (2014) 745–751.
- F. Wu, R. Tseng, S. Huang, R. Juang, Characteristics of pseudo second-order kinetic model for liquid-phase adsorption: a minireview,
Chem. Eng. J., 151 (2009) 1–9.
- J. Goel, K. Kadirvelu, C. Rajagopal, V.K. Garg, Removal of
lead(II) by adsorption using treated granular activated carbon:
batch and column studies, J. Hazard. Mater., 125 (2005) 211–220.
- G.C. Castellar Ortega, Master’s Thesis: Remoción de Pb (II)
en disolución acuosa sobre carbón activado: Experimentos en
columna, Convenio de cooperación Universidad Nacional de
Colombia–Universidad del Magdalena, Bogotá D.C., Colombia,
2012.
- C. Faur-Brasquet, Z. Reddad, K. Kadirvelu, P. Le Cloirec,
Modeling the adsorption of metal ions (Cu2+, Ni2+, Pb2+) onto
ACCs using surface complexation models, Appl. Surf. Sci., 196
(2002) 356–365.