References

  1. M. Prado Cechinel, M. Guelli Ulson de Souza, A. Ulson de Souza, Study of lead (II) adsorption onto activated carbon originating from cow bone, J. Cleaner Prod., 65 (2015) 342–349.
  2. G. Issabayeva, M. Kheireddine Aroua, N. Meriam Sulaiman, Study on palm shell activated carbon adsorption capacity to remove copper ions from aqueous solutions, Desalination, 262 (2010) 94–98.
  3. R. Bansal, J. Donnet, F. Stoeckli, Active Carbon, Marcel Dekker Inc., New York, 1988.
  4. J.T. Nwabanne, P.K. Igbokwe, Adsorption performance of packed bed column for the removal of lead (II) using oil palm fibre, Int. J. Appl. Sci. Technol., 2 (2012) 106–115.
  5. S. Álvarez Torrellas, R. García Lovera, N. Escalona, C. Sepúlveda, J.L. Sotelo, J. García, Chemical-activated carbons from peach stones for the adsorption of emerging contaminants in aqueous solutions, Chem. Eng. J., 279 (2015) 788–798.
  6. M.T. Izquierdo, A. Martínez de Yuso, B. Rubio, R. Pino, Conversion of almond shell to activated carbons: methodical study of the chemical activation based on an experimental design and relationship with their characteristics, Biomass Bioenergy, 35 (2011) 1235–1244.
  7. R. Baccara, J. Bouzida, M. Fekib, A. Montiela, Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorption of heavy metal ions, J. Hazard. Mater., 162 (2009) 1522–1529.
  8. M.F. Sardella, M. Gimenez, C. Navas, C. Morandi, C. Deiana, K. Sapag, Conversion of viticultural industry wastes into activated carbons for removal of lead and cadmium, J. Environ. Chem. Eng., 3 (2015) 253–260.
  9. L. Oliveira, E. Pereira, J.R. Guimaraes, A. Vallone, M. Pereira, J. Mesquita, K. Sapag, Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnCl2 as activating agents, J. Hazard. Mater., 65 (2009) 87–94.
  10. C. Deiana, F. Sardella, H. Silva, A. Amaya, N. Tancredi, Use of grape stalk, a waste of the viticulture industry, to obtain activated carbon, J. Hazard. Mater., 172 (2009) 13–19.
  11. F.J. García-Mateos, R. Ruiz-Rosas, M.D. Marqués, L.M. Cotoruelo, J. Rodríguez-Mirasol, T. Cordero, Removal of paracetamol on biomass-derived activated carbon: modeling the fixed bed breakthrough curves using batch adsorption experiments, Chem. Eng. J., 279 (2015) 18–30.
  12. ASTM D 2866-94 ASTM Committee on Standards, 1916 Race St., Philadelphia, PA, 1994, p. 727.
  13. ASTM D 2867-95 ASTM Committee on Standards, 1916 Race St., Philadelphia, PA, 1995, p. 729.
  14. ASTM E 872-98 ASTM Committee on Standards, 100 Barr Harbor Drive, West Conshohocken, PA, 1998, p. 270.
  15. J. Noh, J. Schwartz, Estimation of the point of zero charge of simple oxides by mass titration, J. Colloid Interface Sci., 3 (1989) 157–164.
  16. A.C. Deiana, M. Gimenez, S. Rómoli, M.F. Sardella, K. Sapag, Batch and column studies for the removal of lead from aqueous solutions using activated carbons from viticultural industry wastes, Adsorpt. Sci. Technol., 32 (2014) 181–195.
  17. S. Lagergren, Zur theorie der sogenannten adsorption geloster stoffe, K. Sven. Vetensk.akad. Handl., 24 (1898) 1–39.
  18. Y.S. Ho, G. Mckay, The sorption of lead(II) on peat, Water Res., 33 (1999) 578–584.
  19. H. Freundlich, About the adsorption in solutions, Z. Phys. Chem., 57 (1906) 385–470.
  20. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  21. Z. Xu, J. Cai, B. Pan, Mathematically modeling fixed-bed adsorption in aqueous systems, J. Zhejiang Univ. Sci. A (Appl. Phys. Eng.), 14 (2013) 155–176.
  22. G. Yan, T. Viraraghava, M. Chen, A new model for heavy metal removal in a biosorption column, Adsorpt. Sci. Technol., 19 (2001) 25–43.
  23. K. Johari, A. Alias, N. Saman, S. Song, Removal performance of elemental mercury by low-cost adsorbents prepared through facile methods of carbonization and activation of coconut husk, Waste Manage. Res., 33 (2015) 81–88.
  24. P. Brende, R. Gadiou, J.-C. Rietsch, P. Fioux, J. Dentzer, A. Ponche, C. Vix-Guterl, Characterization of carbon surface chemistry by combined temperature programmed desorption with in situ X-ray photoelectron spectrometry and temperature programmed desorption with mass spectrometry analysis, Anal. Chem., 84 (2012) 2147−2153.
  25. J.L. Figueiredo, M.F.R. Pereira, The role of surface chemistry in catalysis with carbons, Catal. Today, 150 (2010) 2–7.
  26. L. Giraldo, J.C. Moreno-Piraján, Pb2+ adsorption from aqueous solutions on activated carbons obtained from lignocellulosic residues, Braz. J. Chem. Eng., 25 (2008) 143–148.
  27. W. Tongpoothorn, M. Sriuttha, P. Homchan, S. Chanthai, C. Ruangviriyachai, Preparation of activated carbon derived from Jatropha curcas shell by simple thermo-chemical activation and characterization of their physico-chemical properties, Chem. Eng. Res. Des., 8 (2011) 335–340.
  28. B. Aceved, C. Barriocanal, Texture and surface chemistry of activated carbons obtained from tyre wastes, Fuel Process. Technol., 134 (2015) 275–283.
  29. A. Puziy, O. Poddubnaya, A. Martinez-Alonso, F. Suarez-García, J. Tascón, Surface chemistry of phosphorus-containing carbons of lignocellulosic origin, Carbon, 43 (2005) 2857–2868.
  30. M. Machida, T. Mochimaru, H. Tatsumoto, Lead(II) adsorption onto graphene layer of carbonaceous materials in aqueous solution, Carbon, 44 (2006) 2681–2688.
  31. M. Abbas, S. Kaddourb, M. Trari, Kinetic and equilibrium studies of cobalt adsorption on apricot stone activated carbon, J. Ind. Eng. Chem., 20 (2014) 745–751.
  32. F. Wu, R. Tseng, S. Huang, R. Juang, Characteristics of pseudo second-order kinetic model for liquid-phase adsorption: a minireview, Chem. Eng. J., 151 (2009) 1–9.
  33. J. Goel, K. Kadirvelu, C. Rajagopal, V.K. Garg, Removal of lead(II) by adsorption using treated granular activated carbon: batch and column studies, J. Hazard. Mater., 125 (2005) 211–220.
  34. G.C. Castellar Ortega, Master’s Thesis: Remoción de Pb (II) en disolución acuosa sobre carbón activado: Experimentos en columna, Convenio de cooperación Universidad Nacional de Colombia–Universidad del Magdalena, Bogotá D.C., Colombia, 2012.
  35. C. Faur-Brasquet, Z. Reddad, K. Kadirvelu, P. Le Cloirec, Modeling the adsorption of metal ions (Cu2+, Ni2+, Pb2+) onto ACCs using surface complexation models, Appl. Surf. Sci., 196 (2002) 356–365.