References

  1. A.M. Mansour, R.S. Al-Maamari, A.S. Al-Hashmi, A. Zaitoun, H. Al-Sharji, In-situ rheology and mechanical degradation of EOR polyacrylamide solutions under moderate shear rates, J. Pet. Sci. Eng., 115 (2014) 57–65.
  2. X.S. Rong, F.X. Qiu, C. Zhang, L. Fu, Y.Y. Wang, D.Y. Yang, Preparation of Ag-AgBr/TiO2-graphene and its visible light photocatalytic activity enhancement for the degradation of polyacrylamide, J. Alloys Compd., 639 (2015) 153–161.
  3. X.H. Dai, F. Luo, J. Yi, Q.B. He, B. Dong, Biodegradation of polyacrylamide by anaerobic digestion under mesophilic condition and its performance in actual dewatered sludge system, Bioresour. Technol., 153 (2014) 55–61.
  4. L. Yi, K.Z. Li, D.X. Liu, Degradation of polyacrylamide: a review, Adv. Mater. Res., 800 (2013) 411–416.
  5. B.C. Qiu, M.Y. Xing, J.L. Zhang, Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries, J. Am. Chem. Soc., 136 (2014) 5852–5855.
  6. D. Liu, Y.H. Lv, M. Zhang, Y.F. Liu, Y.Y. Zhu, R.L. Zong, Y.F. Zhu, Defect-related photoluminescence and photocatalytic properties of porous ZnO nanosheets, J. Mater. Chem. A, 2 (2014) 15377–15388.
  7. F. Motahari, M.R. Mozdianfard, F. Soofivand, M. Salavati-Niasari, NiO nanostructures: synthesis, characterization and photocatalyst application in dye wastewater treatment, RSC Adv., 4 (2014) 27654–27660.
  8. W.C. Huang, L.M. Lyu, Y.C. Yang, M.H. Huang, Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity, J. Am. Chem. Soc., 134 (2012) 1261–1267.
  9. J. Kim, C.W. Lee, W. Choi, Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light, Environ. Sci. Technol., 44 (2010) 6849–6854.
  10. X.F. Wang, S.F. Li, H.G. Yu, J.G. Yu, S.W. Liu, Ag2O as a new visible-light photo catalyst: self-stability and high photocatalytic activity, Chem. Eur. J., 17 (2011) 7777–7780.
  11. L. Zhang, H. Wang, Cuprous oxide nanoshells with geometrically tunable optical properties, ACS Nano, 5 (2011) 3257–3267.
  12. F.X. Gao, X.D. Wang, D.Z. Wu, Design and fabrication of bifunctional microcapsules for solar thermal energy storage and solar photocatalysis by encapsulating paraffin phase change material into cuprous oxide, Sol. Energy Mater. Sol. Cells, 168 (2017) 146–164.
  13. L. Wu, Y.L. Wu, S. Jin, L. Zhang, Z.P. Xun, Gas sensitivity and photocatalytic performance of cuprous oxide with novel morphologies, Chem. Phys. Lett., 662 (2016) 47–51.
  14. W.C.J. Ho, Q. Tay, H. Qi, Z.H. Huang, J. Li, Z. Chen, Photocatalytic and adsorption performances of faceted cuprous oxide (Cu2O) particles for the removal of methyl orange (MO) from aqueous media, Molecules, 22 (2017) 677.
  15. F.G. Han, H.P. Li, J. Yang, X.D. Cai, L. Fu, One-pot synthesis of cuprous oxide-reduced graphene oxide nanocomposite with enhanced photocatalytic and electrocatalytic performance, Physica E, 77 (2016) 122–126.
  16. X.Q. Liu, Z. Li, W. Zhao, C.X. Zhao, Y. Wang, Z.Q. Lin, A facile route to the synthesis of reduced graphene oxide-wrapped octahedral Cu2O with enhanced photocatalytic and photovoltaic performance, J. Mater. Chem. A, 3 (2015) 19148–19154.
  17. X.Q. An, K. Li, J.W. Tang, Cu2O/reduced graphene oxide composites for the photocatalytic conversion of CO2, Chem. Sus. Chem., 7 (2014) 1086–1093.
  18. J. Liu, J. Ke, D.G. Li, H.Q. Sun, P. Liang, X.G. Duan, W.J. Tian, M.O. Tadé, S.M. Liu, S.B. Wang, Oxygen vacancies in shape controlled Cu2O/reduced graphene oxide/In2O3 hybrid for promoted photocatalytic water oxidation and degradation of environmental pollutants, ACS Appl. Mater. Interfaces, 9 (2017) 11678–11688.
  19. Y.H. Zheng, Z. Wang, F. Peng, A.W. Wang, X.D. Cai, L. Fu, Growth of Cu2O nanoparticle on reduced graphene sheets with high photocatalytic activity for degradation of Rhodamine B, Fullerenes Nanotubes Carbon Nanostruct., 4 (2016) 149–153.
  20. Q.J. Xiang, J.G. Yu, M. Jaroniec, Graphene-based semiconductor photocatalysts, Chem. Soc. Rev., 41 (2012) 782–796.
  21. P. Tran, S. Batabyal, S. Pramana, J. Barber, L. Wong, S. Loo, A cuprous oxide-reduced graphene oxide (Cu2O-rGO) composite photocatalyst for hydrogen generation: employing rGO as an electron acceptor to enhance the photocatalytic activity and stability of Cu2O, Nanoscale, 4 (2012) 3875–3878.
  22. M. Yu, Y.X. Ma, J.H. Liu, X.J. Li, S.M. Li, S.Y. Liu, Sub-coherent growth of ZnO nanorod arrays on three-dimensional graphene framework as one-bulk high-performance photocatalyst, Appl. Surf. Sci., 390 (2016) 266–272.
  23. Y. Xue, R. Su, G. Zhang, Q. Wang, P. Wang, W. Zhang, Z.H. Wang, Visible light responsive Fe–ZnS/nickel foam photocatalyst with enhanced photocatalytic activity and stability, RSC Adv., 6 (2016) 93370–93373.
  24. Q. Zhang, F. Li, X.Y. Chang, D.L. He, Comparison of nickel foam/Ag-supported ZnO, TiO2, and WO3 for toluene photodegradation, Mater. Manuf. Processes, 29 (2014) 789–794.
  25. R. Azimirad, S. Safa, Preparation of three dimensional graphene foam-WO3 nanocomposite with enhanced visible light photocatalytic activity, Mater. Chem. Phys., 162 (2015) 686–691.
  26. M.W. Scoggins, J.W. Miller, Spectrophotometric determination of water soluble organic amides, Anal. Chem., 47 (1975) 152–154.
  27. J. Lee, K. You, C. Park, Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene, Adv. Mater., 24 (2012) 1084–1088.
  28. M. Cao, P. Wang, Y. Ao, C. Wang, J. Hou, J. Qian, Photocatalytic degradation of tetrabromobisphenol A by a magnetically separable grapheme-TiO2 composite photocatalyst: mechanism and intermediates analysis, Chem. Eng. J., 264 (2015) 113–124.
  29. S.D. Perera, R.G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, K.J. Balkus Jr., Hydrothermal synthesis of grapheme-TiO2 nanotube composites with enhanced photocatalytic activity, ACS Catal., 2 (2012) 949–956.
  30. S. Parra, V. Nadtotechenko, P. Albers, J. Kiwi, Discoloration of azo-dyes at biocompatible pH-values through an Fe-histidine complex immobilized on Nafion via Fenton-like processes, J. Phys. Chem. B, 108 (2004) 4439–4448.
  31. Y. Zhou, W. Li, W. Wan, R. Zhang, Y. Lin, W/Mo co-doped BiVO4 for photocatalytic treatment of polymer-containing wastewater in oilfield, Superlattices Microstruct., 82 (2015) 67–74.
  32. D. Gu, Y. Wang, Z.D. Li, Y. Liu, B.H. Wang, H.J. Wu, UV-light aided photoelectrochemical synthesis of Au/TiO2 NTs for photoelectrocatalytic degradation of HPAM, RSC Adv., 6 (2016) 63711–63716.
  33. J.H. Liu, J.W. Ren, R.D. Xu, B. Yu, J. Wang, Biodegradation of partially hydrolyzed polyacrylamide by immobilized bacteria isolated from HPAM-containing wastewater, Environ. Prog. Sustain. Energy, 35 (2016) 1344–1352.
  34. A.R. Al Hashmi, R.S. Al Maamari, I.S. Al Shabibi, A.M. Mansoor, A. Zaitoun, H.H. Al Sharji, Rheology and mechanical degradation of high-molecular-weight partially hydrolyzed polyacrylamide during flow through capillaries, J. Pet. Sci. Eng., 105 (2013) 100–106.
  35. M. Lu, X.F. Wei, Treatment of oilfield wastewater containing polymer by the batch activated sludge reactor combined with a zerovalent iron/EDTA/air system, Bioresour. Technol., 102 (2011) 2555–2562.