References
- G. Wypych, Handbook of Polymers, 2nd ed., ChemTec
Publishing, Ontario, Canada, 2016, pp. 271–275.
- M.M. Iovleva, V.N. Smirnova, G.A. Budnitskii, The solubility of
polyacrylonitrile, Fibre Chem., 33 (2001) 262–264.
- N. Scharnagl, H. Buschatz, Polyacrylonitrile (PAN) membranes
for ultra- and microfiltration, Desalination, 139 (2001) 191–198.
- I.-C. Kim, H.-G. Yun, K.-H. Lee, Preparation of asymmetric
polyacrylonitrile membrane with small pore size by phase
inversion and post-treatment process, J. Membr. Sci., 199 (2002)
75–84.
- H. Lohokare, Y. Bhole, S. Taralkar, U. Kharul, Poly(acrylonitrile)
based ultrafiltration membranes: optimization of preparation
parameters, Desalination, 282 (2011) 46–53.
- P. Wang, Z. Wang, Z. Wu, Insights into the effect of preparation
variables on morphology and performance of polyacrylonitrile
membranes using Plackett–Burman design experiments, Chem.
Eng. J., 193–194 (2012) 50–58.
- T.D. Tran, S. Mori, M. Suzuki, Plasma modification of
polyacrylonitrile ultrafiltration membrane, Thin Solid Films,
515 (2007) 4148–4152.
- K. Nouzaki, M. Nagata, J. Arai, Y. Idemoto, N. Koura,
H. Yanagishita, H. Negishi, D. Kitamoto, T. Ikegami, K. Haraya,
Preparation of polyacrylonitrile ultrafiltration membranes for
wastewater treatment, Desalination, 144 (2002) 53–59.
- H.-A. Tsai, Y.-L. Ye, K.-R. Lee, S.-H. Huang, M.-C. Suen,
J.-Y. Lai, Characterization and pervaporation dehydration of
heat-treatment PAN hollow fiber membranes, J. Membr. Sci.,
368 (2011) 254–263.
- D. Pal, S. Neogi, S. De, Surface modification of polyacrylonitrile
co-polymer membranes using pulsed direct current nitrogen
plasma, Thin Solid Films, 597 (2015) 171–182.
- T. Wang, J. Lu, L. Mao, Z. Wang, Electric field assisted layer-by-layer assembly of graphene oxide containing nanofiltration
membrane, J. Membr. Sci., 515 (2016) 125–133.
- W.-S. Hung, Q.-F. An, M. De Guzman, H.-Y. Lin, S.-H. Huang,
W.-R. Liu, C.-C. Hu, K.-R. Lee, J.-Y. Lai, Pressure-assisted selfassembly
technique for fabricating composite membranes
consisting of highly ordered selective laminate layers of
amphiphilic graphene oxide, Carbon, 68 (2014) 670–677.
- C.-L. Lai, W.-C. Chao, W.-S. Hung, Q. An, M. De Guzman,
C.-C. Hu, K.-R. Lee, Physicochemical effects of hydrolyzed
asymmetric polyacrylonitrile membrane microstructure on
dehydrating butanol, J. Membr. Sci., 490 (2015) 275–281.
- Z. Fan, Z. Wang, N. Sun, J. Wang, S. Wang, Performance
improvement of polysulfone ultrafiltration membrane by
blending with polyaniline nanofibers, J. Membr. Sci., 320 (2008)
363–371.
- B.-H. Lee, H.-J. Kim, H.-S. Yang, Polymerization of aniline on
bacterial cellulose and characterization of bacterial cellulose/polyaniline nanocomposite films, Curr. Appl. Phys., 12 (2012)
75–80.
- S. Vulpe, F. Nastase, C. Nastase, I. Stamatin, PAN–PAni
nanocomposites obtained in thermocentrifugal fields, Thin
Solid Films, 495 (2006) 113–117.
- G. Ciric-Marjanovic, Recent advances in polyaniline research:
polymerization mechanisms, structural aspects, properties and
applications, Synth. Met., 177 (2013) 1–47.
- S. Bhadra, D. Khastgir, N.K. Singha, J.H. Lee, Progress in
preparation, processing and applications of polyaniline, Prog.
Polym. Sci., 34 (2009) 783–810.
- Z.M. Tahir, E.C. Alocilja, D.L. Grooms, Polyaniline synthesis
and its biosensor application, Biosens. Bioelectron., 20 (2005)
1690–1695.
- B. Adhikari, S. Majumdar, Polymers in sensor applications,
Prog. Polym. Sci., 29 (2004) 699–766.
- S. Nambiar, J.T.W. Yeow, Conductive polymer-based sensors
for biomedical applications, Biosens. Bioelectron., 26 (2011)
1825–1832.
- F. Raeesi, M. Nouri, A.K. Haghi, Electrospinning nanofibers of
polyaniline-polyacrylonitrile blend nanofibers, e-Polymers, 114
(2009) 1–13.
- N. Kizildag, N. Ucar, A. Onen, I. Karacan, Polyacrylonitrile/polyaniline composite nanofiber webs with electrostatic
discharge properties, J. Compos. Mater., 50 (2016) 3981–3994.
- W. Pan, S.L. Yang, G. Li, J.M. Jiang, Electrical and structural
analysis of conductive polyaniline/polyacrylonitrile composites,
Eur. Polym. J., 41 (2005) 2127–2133.
- A.G. MacDiarmid, A.J. Epstein, Secondary doping in
polyaniline, Synth. Met., 69 (1995) 85–92.
- B. Fryczkowska, Z. Piprek, M. Sieradzka, R. Fryczkowski,
J.B. Janicki, Preparation and properties of composite PAN/PANI
membranes, Int. J. Polym. Sci., 2017 (2017) 1–14.
- J. Ren, J.R. McCutcheon, Polyacrylonitrile supported thin
film composite hollow fiber membranes for forward osmosis,
Desalination, 372 (2015) 67–74.
- R.S. Porter, Development of high ductility and tensile properties
by a two-stage draw of poly(acrylonitrile): effect of molecular
weight, J. Polym. Sci., Part B: Polym. Phys., 36 (1997) 629–640.
- M. Sniechowski, R. Borek, K. Piwowarczyk, W. Luzny, New
structural model of PANI/CSA conducting polymer system
obtained by molecular dynamics simulations, Macromol.
Theory Simul., 24 (2015) 284–290.
- X. Guo, G.T. Fei, H. Su, L. De Zhang, High-performance and
reproducible polyaniline nanowire/tubes for removal of Cr(VI)
in aqueous solution, J. Phys. Chem. C, 115 (2011) 1608–1613.
- B.T. Raut, M.A. Chougule, S.R. Nalage, D.S. Dalavi,
S. Mali, P.S. Patil, V.B. Patil, CSA doped polyaniline/CdS
organic-inorganic nanohybrid: physical and gas sensing
properties, Ceram. Int., 38 (2012) 5501–5506.
- G.D. Khuspe, S.T. Navale, M.A. Chougule, V.B. Patil, Ammonia
gas sensing properties of CSA doped PANi-SnO2 nanohybrid
thin films, Synth. Met., 185 (2013) 1–8.
- J.A. Marins, B.G. Soares, K. Dahmouche, S.J.L. Ribeiro, H.
Barud, D. Bonemer, Structure and properties of conducting
bacterial cellulose-polyaniline nanocomposites, Cellulose, 18
(2011) 1285–1294.
- Z. Bashir, Polyacrylonitrile, an unusual linear homopolymer
with two glass transitions, Indian J. Fibre Text. Res., 24 (1999)
1–9.
- Z. Bashir, The hexagonal mesophase in atactic polyacrylonitrile:
a new interpretation of the phase transitions in the polymer,
J. Macromol. Sci., Phys., 40 (2001) 41–67.
- Z. Bashir, S.P. Church, D. Waldron, Interaction of water and
hydrated crystallization in water-plasticized polyacrylonitrile
films, Polymer, 35 (1994) 967–976.
- A. Al-Ahmed, F. Mohammad, M.Z.A. Rahman, Preparation,
characterization, thermooxidative degradation, and stability
of polyaniline/polyacrylonitrile composites in terms of directcurrent
electrical conductivity retention, J. Appl. Polym. Sci.,
99 (2006) 437–448.
- V. Kumar, T. Yokozeki, T. Goto, T. Takahashi, Synthesis and
characterization of PANI-DBSA/DVB composite using rollmilled
PANI-DBSA complex, Polymer, 86 (2016) 129–137.
- G. Zhai, Q. Fan, Y. Tang, Y. Zhang, D. Pan, Z. Qin, Conductive
composite films composed of polyaniline thin layers on
microporous polyacrylonitrile surfaces, Thin Solid Films,
519 (2010) 169–173.
- S. Zhao, Z. Wang, X. Wei, X. Tian, J. Wang, S. Yang, S. Wang,
Comparison study of the effect of PVP and PANI nanofibers
additives on membrane formation mechanism, structure and
performance, J. Membr. Sci., 385–386 (2011) 110–122.
- B. Fryczkowska, L. Przywara, T. Turek, Application of
PAN/PANI composite membranes in purification of industrial
wastewater generated during processing of metals, Inżynieria
Ekol., 18 (2017) 21–29.
- J. Ren, X. Huang, N. Wang, K. Lu, X. Zhang, W. Li, D. Liu,
Preparation of polyaniline-coated polyacrylonitrile fiber mats
and their application to Cr(VI) removal, Synth. Met., 222 (2016)
255–266.
- M.J. Corbatón-Báguena, S. Álvarez-Blanco, M.C. Vincent-Vela,
Cleaning of ultrafiltration membranes fouled with BSA by
means of saline solutions, Sep. Purif. Technol., 125 (2014) 1–10.
- Y.N. Wang, C.Y. Tang, Protein fouling of nanofiltration,
reverse osmosis, and ultrafiltration membranes—the role of
hydrodynamic conditions, solution chemistry, and membrane
properties, J. Membr. Sci., 376 (2011) 275–282.
- L. Hou, Z. Wang, P. Song, A precise combined complete blocking
and cake filtration model for describing the flux variation in
membrane filtration process with BSA solution, J. Membr. Sci.,
542 (2017) 186–194.
- M. Hashino, K. Hirami, T. Ishigami, Y. Ohmukai, T. Maruyama,
N. Kubota, H. Matsuyama, Effect of kinds of membrane
materials on membrane fouling with BSA, J. Membr. Sci., 384
(2011) 157–165.