References

  1. U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review, J. Hazard. Mater., 170 (2009) 520–529.
  2. D. Ayodhya, M. Venkatesham, A.S. Kumari, G.B. Reddy, D. Ramakrishna, G. Veerabhadram, Photocatalytic degradation of dye pollutants under solar, visible and UV lights using green synthesized CuS nanoparticles, J. Exp. Nanosci., 11 (2016) 418–432.
  3. A. Mohamed, R. El-Sayed, T.A. Osman, M.S. Toprak, M. Muhammed, A. Uheida, Composite nanofibers for highly efficient photocatalytic degradation of organic dyes from contaminated water, Environ. Res., 145 (2016) 18–25.
  4. R.D.C. Soltani, Z. Haghighat, Visible light photocatalysis of a textile dye over ZnO nanostructures covered on natural diatomite, Turk. J. Chem., 40 (2016) 454–466.
  5. P.S.S. Kumar, R. Sivakumar, S. Anandan, J. Madhavan, P. Maruthamuthu, M. Ashokkumar, Photocatalytic degradation of acid red 88 using Au–TiO2 nanoparticles in aqueous solutions, Water Res., 42 (2008) 4878–4884.
  6. B. Shahmoradi, A. Maleki, K. Byrappa, Removal of Disperse Orange 25 using in situ surface-modified iron-doped TiO2 nanoparticles, Desal. Wat. Treat., 53 (2015) 3615–3622.
  7. K. Saeed, I. Khan, M. Sadiq, Synthesis of graphene-supported bimetallic nanoparticles for the sunlight photodegradation of Basic Green 5 dye in aqueous medium, Sep. Sci. Technol., 57 (2016) 1421–1426.
  8. M. Fox, Photocatalytic Oxidation of Organic Substances, M. Schiavello, Ed., Photocatalysis and Environment: Trends and Applications, New York Academic Publishers, New York, 1988.
  9. O. Sharma, M.K. Sharma, Copper hexacyanoferrate(II) as photocatalyst: decolorisation of neutral red dye, Int. J. ChemTech. Res., 5 (2013) 2706–2716.
  10. N. Serpone, A.V. Emeline, Suggested terms and definitions in photocatalysis and radiocatalysis, Int. J. Photoenergy, 4 (2002) 91–131.
  11. H.R. Pouretedal, M. Kiyani, Photodegradation of 2-nitrophenol catalyzed by CoO, CoS and CoO/CoS nanoparticles, J. Iran. Chem. Soc., 11 (2014) 271–277.
  12. C. Brochot, G. Mouret, N. Michielsen, S. Chazelet, D. Thomas, Penetration of nanoparticles in 5 nm to 400 nm size range through two selected fibrous media, J. Phys. Conf. Ser., 304 (2011) 1–9.
  13. M. Iwamoto, K. Kuroda, V. Zaporojtchenko, S. Hayashi, F. Faupel, Production of gold nanoparticles-polymer composite by quite simple method, Eur. Phys. J., 24 (2003) 365–367.
  14. M.H. Zori, Synthesis of TiO2 nanoparticles by microemulsion/heat treated method and photodegradation of methylene blue, J. Inorg. Organomet. Polym. Mater., 21 (2011) 81–90.
  15. R.V. Solomon, I.S. Lydia, J.P. Merlin, P. Venuvanalingam, Enhanced photocatalytic degradation of azo dyes using nano Fe3O4, J. Iran. Chem. Soc., 9 (2012) 101–109.
  16. G.G. Selvam, K. Sivakumar, Phycosynthesis of silver nanoparticles and photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Hypnea musciformis (Wulfen) J.V. Lamouroux, Appl. Nanosci., 5 (2015) 617–622.
  17. A. Maleki, B. Shahmoradi, Solar degradation of Direct Blue 71 using surface modified iron doped ZnO hybrid nanomaterials, Water Sci. Technol., 65 (2012) 1923–1928.
  18. B. Shahmoradi, K. Namratha, K. Byrappa, K. Soga, S. Ananda, R. Somashekar, Enhancement of the photocatalytic activity of modified ZnO nanoparticles with manganese additive, Res. Chem. Intermed., 37 (2011) 329–340.
  19. B. Shahmoradi, M. Negahdary, A. Maleki, Hydrothermal synthesis of surface-modified, manganese-doped TiO2 nanoparticles for photodegradation of methylene blue, Environ. Eng. Sci., 29 (2012) 1032–1037.
  20. J.V. Tolia, M. Chakraborty, Z.V.P. Murthy, Photocatalytic degradation of malachite green dye using doped and undoped ZnS nanoparticles, Pol. J. Chem. Technol., 14 (2012) 16–21.
  21. C. Sahoo, A.K. Gupta, I.M.S. Pillai, Photocatalytic degradation of methylene blue dye from aqueous solution using silver iondoped TiO2 and its application to the degradation of real textile wastewater, J. Environ. Sci. Health A, 47 (2012) 1428–1438.
  22. C. Sauter, M.A. Emin, H.P. Schuchmann, S. Tavman, Influence of hydrostatic pressure and sound amplitude on the ultrasound induced dispersion and de-agglomeration of nanoparticles, Ultrason. Sonochem., 15 (2008) 517–523.
  23. K. Saeed, I. Khan, S.Y. Park, TiO2/amidoxime-modified polyacrylonitrile nanofibers and its application for the photodegradation of methyl blue in aqueous medium, Desal. Wat. Treat., 54 (2015) 3146–3151.
  24. S.W. Hwang, A. Umar, G.N. Dar, S.H. Kim, R.I. Badran, Synthesis and characterization of iron oxide nanoparticles for phenyl hydrazine, Sensor Appl., 12 (2014) 1–5.
  25. M.S. Tehrani, P.A. Azar, P.E. Namin, S.M. Dehaghi, Removal of lead ions from wastewater using functionalized multiwalled carbon nanotubes with tris(2-aminoethyl)amine, J. Environ. Protect., 4 (2013) 529–536.
  26. V.H. Nguyenand, J.-J. Shim, Green synthesis and characterization of carbon nanotubes/polyaniline nanocomposites, J. Spectro., 2015 (2015) 1–9.
  27. V.S. Shrivastava, Photocatalytic degradation of methylene blue dye and chromium metal from wastewater using nanocrystalline TiO2 semiconductor, Arch. Appl. Sci. Res., 4 (2012) 1244–1254.
  28. K. Dai, L. Lu, G. Dawson, Development of UV-LED/TiO2 device and their application for photocatalytic degradation of methylene blue, JMEPEG, 22 (2013) 1035–1040.
  29. T.W. Kim, M.J. Lee, Effect of pH and temperature for photocatalytic degradation of organic compound on carboncoated TiO2, J. Adv. Eng. Technol., 3 (2010) 193–198.
  30. S. Tabasideh, A. Maleki, B. Shahmoradi, E. Ghahremani, G. McKay, Sonophotocatalytic degradation of diazinon in aqueous solution using iron-doped TiO2 nanoparticles, Sep. Purif. Technol., 189 (2017) 186–192.
  31. S.T. Ong, W.S. Cheong, Y.T. Hung, Photodegradation of Commercial Dye, Methylene Blue Using Immobilized TiO2, 4th International Conference on Chemical, Biological and Environmental Engineering, Vol. 43, 2012, pp. 109–113.
  32. K.M. Reza, A.S.W. Kurny, F. Gulshan, Parameters affecting the photocatalytic degradation of dyes using TiO2: a review, Appl. Water Sci., 7 (2015) 1569–1578.