References
- U.G. Akpan, B.H. Hameed, Parameters affecting the
photocatalytic degradation of dyes using TiO2-based
photocatalysts: a review, J. Hazard. Mater., 170 (2009) 520–529.
- D. Ayodhya, M. Venkatesham, A.S. Kumari, G.B. Reddy, D.
Ramakrishna, G. Veerabhadram, Photocatalytic degradation of
dye pollutants under solar, visible and UV lights using green
synthesized CuS nanoparticles, J. Exp. Nanosci., 11 (2016)
418–432.
- A. Mohamed, R. El-Sayed, T.A. Osman, M.S. Toprak, M.
Muhammed, A. Uheida, Composite nanofibers for highly
efficient photocatalytic degradation of organic dyes from
contaminated water, Environ. Res., 145 (2016) 18–25.
- R.D.C. Soltani, Z. Haghighat, Visible light photocatalysis of
a textile dye over ZnO nanostructures covered on natural
diatomite, Turk. J. Chem., 40 (2016) 454–466.
- P.S.S. Kumar, R. Sivakumar, S. Anandan, J. Madhavan, P.
Maruthamuthu, M. Ashokkumar, Photocatalytic degradation of
acid red 88 using Au–TiO2 nanoparticles in aqueous solutions,
Water Res., 42 (2008) 4878–4884.
- B. Shahmoradi, A. Maleki, K. Byrappa, Removal of Disperse
Orange 25 using in situ surface-modified iron-doped TiO2
nanoparticles, Desal. Wat. Treat., 53 (2015) 3615–3622.
- K. Saeed, I. Khan, M. Sadiq, Synthesis of graphene-supported
bimetallic nanoparticles for the sunlight photodegradation of
Basic Green 5 dye in aqueous medium, Sep. Sci. Technol., 57
(2016) 1421–1426.
- M. Fox, Photocatalytic Oxidation of Organic Substances, M.
Schiavello, Ed., Photocatalysis and Environment: Trends and
Applications, New York Academic Publishers, New York, 1988.
- O. Sharma, M.K. Sharma, Copper hexacyanoferrate(II)
as photocatalyst: decolorisation of neutral red dye, Int. J.
ChemTech. Res., 5 (2013) 2706–2716.
- N. Serpone, A.V. Emeline, Suggested terms and definitions in
photocatalysis and radiocatalysis, Int. J. Photoenergy, 4 (2002)
91–131.
- H.R. Pouretedal, M. Kiyani, Photodegradation of 2-nitrophenol
catalyzed by CoO, CoS and CoO/CoS nanoparticles, J. Iran.
Chem. Soc., 11 (2014) 271–277.
- C. Brochot, G. Mouret, N. Michielsen, S. Chazelet, D. Thomas,
Penetration of nanoparticles in 5 nm to 400 nm size range
through two selected fibrous media, J. Phys. Conf. Ser., 304
(2011) 1–9.
- M. Iwamoto, K. Kuroda, V. Zaporojtchenko, S. Hayashi, F.
Faupel, Production of gold nanoparticles-polymer composite
by quite simple method, Eur. Phys. J., 24 (2003) 365–367.
- M.H. Zori, Synthesis of TiO2 nanoparticles by microemulsion/heat treated method and photodegradation of methylene blue,
J. Inorg. Organomet. Polym. Mater., 21 (2011) 81–90.
- R.V. Solomon, I.S. Lydia, J.P. Merlin, P. Venuvanalingam,
Enhanced photocatalytic degradation of azo dyes using nano
Fe3O4, J. Iran. Chem. Soc., 9 (2012) 101–109.
- G.G. Selvam, K. Sivakumar, Phycosynthesis of silver
nanoparticles and photocatalytic degradation of methyl orange
dye using silver (Ag) nanoparticles synthesized from Hypnea
musciformis (Wulfen) J.V. Lamouroux, Appl. Nanosci., 5 (2015)
617–622.
- A. Maleki, B. Shahmoradi, Solar degradation of Direct Blue 71
using surface modified iron doped ZnO hybrid nanomaterials,
Water Sci. Technol., 65 (2012) 1923–1928.
- B. Shahmoradi, K. Namratha, K. Byrappa, K. Soga, S. Ananda,
R. Somashekar, Enhancement of the photocatalytic activity of
modified ZnO nanoparticles with manganese additive, Res.
Chem. Intermed., 37 (2011) 329–340.
- B. Shahmoradi, M. Negahdary, A. Maleki, Hydrothermal
synthesis of surface-modified, manganese-doped TiO2
nanoparticles for photodegradation of methylene blue, Environ.
Eng. Sci., 29 (2012) 1032–1037.
- J.V. Tolia, M. Chakraborty, Z.V.P. Murthy, Photocatalytic
degradation of malachite green dye using doped and undoped
ZnS nanoparticles, Pol. J. Chem. Technol., 14 (2012) 16–21.
- C. Sahoo, A.K. Gupta, I.M.S. Pillai, Photocatalytic degradation
of methylene blue dye from aqueous solution using silver iondoped
TiO2 and its application to the degradation of real textile
wastewater, J. Environ. Sci. Health A, 47 (2012) 1428–1438.
- C. Sauter, M.A. Emin, H.P. Schuchmann, S. Tavman, Influence
of hydrostatic pressure and sound amplitude on the ultrasound
induced dispersion and de-agglomeration of nanoparticles,
Ultrason. Sonochem., 15 (2008) 517–523.
- K. Saeed, I. Khan, S.Y. Park, TiO2/amidoxime-modified
polyacrylonitrile nanofibers and its application for the
photodegradation of methyl blue in aqueous medium, Desal.
Wat. Treat., 54 (2015) 3146–3151.
- S.W. Hwang, A. Umar, G.N. Dar, S.H. Kim, R.I. Badran,
Synthesis and characterization of iron oxide nanoparticles for
phenyl hydrazine, Sensor Appl., 12 (2014) 1–5.
- M.S. Tehrani, P.A. Azar, P.E. Namin, S.M. Dehaghi, Removal
of lead ions from wastewater using functionalized multiwalled
carbon nanotubes with tris(2-aminoethyl)amine, J. Environ.
Protect., 4 (2013) 529–536.
- V.H. Nguyenand, J.-J. Shim, Green synthesis and characterization
of carbon nanotubes/polyaniline nanocomposites, J. Spectro.,
2015 (2015) 1–9.
- V.S. Shrivastava, Photocatalytic degradation of methylene blue
dye and chromium metal from wastewater using nanocrystalline
TiO2 semiconductor, Arch. Appl. Sci. Res., 4 (2012) 1244–1254.
- K. Dai, L. Lu, G. Dawson, Development of UV-LED/TiO2
device and their application for photocatalytic degradation of
methylene blue, JMEPEG, 22 (2013) 1035–1040.
- T.W. Kim, M.J. Lee, Effect of pH and temperature for
photocatalytic degradation of organic compound on carboncoated
TiO2, J. Adv. Eng. Technol., 3 (2010) 193–198.
- S. Tabasideh, A. Maleki, B. Shahmoradi, E. Ghahremani, G.
McKay, Sonophotocatalytic degradation of diazinon in aqueous
solution using iron-doped TiO2 nanoparticles, Sep. Purif.
Technol., 189 (2017) 186–192.
- S.T. Ong, W.S. Cheong, Y.T. Hung, Photodegradation of
Commercial Dye, Methylene Blue Using Immobilized TiO2,
4th International Conference on Chemical, Biological and
Environmental Engineering, Vol. 43, 2012, pp. 109–113.
- K.M. Reza, A.S.W. Kurny, F. Gulshan, Parameters affecting the
photocatalytic degradation of dyes using TiO2: a review, Appl.
Water Sci., 7 (2015) 1569–1578.