References
- A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide
photocatalysis, J. Photochem. Photobiol., C, 1 (2000) 1–21.
- W. Zhang, Y. Li, F. Wang, Properties of TiO2 thin films prepared
by magnetron sputtering, J. Mater. Sci. Technol., 18 (2002)
101–107.
- D. Chatterjee, S. Dasgupta, Visible light induced photocatalytic
degradation of organic pollutants, J. Photochem. Photobiol., C,
6 (2005) 186–205.
- W. Zhang, Z. Ma, K. Li, L. Yang, H. Li, H. He, Sol-gel synthesis
of nano-sized TiO2 supported on HZSM-5, Curr. Nanosci., 12
(2016) 514–519.
- P. Zhou, J. Wu, W. Yu, G. Zhao, G. Fang, S. Cao, Vectorial
doping-promoting charge transfer in anatase TiO2 {0 0 1}
surface, Appl. Surf. Sci., 319 (2014) 167–172.
- Y. Ku, S. Shiu, H. Wu, Decomposition of dimethyl phthalate
in aqueous solution by UV–LED/TiO2 process under periodic
illumination, J. Photochem. Photobiol., A, 332 (2017) 299–305.
- M. Bellardita, A. Paola, B. Megna, L. Palmisano, Absolute
crystallinity and photocatalytic activity of brookite TiO2
samples, Appl. Catal., B, 201 (2017) 150–158.
- M. Tahir, B. Tahir, N. Saidina Amin, H. Alias, Selective
photocatalytic reduction of CO2 by H2O/H2 to CH4 and CH3OH
over Cu-promoted In2O3/TiO2 nanocatalyst, Appl. Surf. Sci., 389
(2016) 46–55.
- J.B. Cai, X.Q. Wu, S.X. Li, F.Y. Zheng, Controllable location of
Au nanoparticles as cocatalyst onto TiO2@CeO2 nanocomposite
hollow spheres for enhancing photocatalytic activity, Appl.
Catal. B, 201 (2017) 12–21.
- W.K. Jo, S. Kumar, M.A. Isaacs, A.F. Lee, S. Karthikeyan, Cobalt
promoted TiO2/GO for the photocatalytic degradation of
oxytetracycline and Congo Red, Appl. Catal. B, 201 (2017) 159–168.
- J. Yu, J. Xiong, B. Cheng, S. Liu, Fabrication and characterization
of Ag-TiO2 multiphase nanocomposite thin films with enhanced
photocatalytic activity, Appl. Catal. B, 60 (2005) 211–221.
- J. Du, X. Li, K. Li, X. Gu, W. Qi, K. Zhang, High hydrophilic
Si-doped TiO2 nanowires by chemical vapor deposition, J.
Alloys Compd., 687 (2016) 893–897.
- A. Juma, I.O. Acik, A.T. Oluwabi, A. Mere, V. Mikli, M. Danilson,
M. Krunks, Zirconium doped TiO2 thin films deposited by
chemical spray pyrolysis, Appl. Surf. Sci., 387 (2016) 539–545.
- W. Zhang, X. Pei, B. Yang, H. He, Effects of boron content and
calcination temperature on properties of B-TiO2 photocatalyst
prepared by solvothermal method, J. Adv. Oxid. Technol., 17
(2014) 66–72.
- E.B. Simsek, Solvothermal synthesized boron doped TiO2
catalysts: photocatalytic degradation of endocrine disrupting
compounds and pharmaceuticals under visible light irradiation,
Appl. Catal. B, 200 (2017) 309–322.
- C. Han, J. Andersen, V. Likodimos, P. Falaras, J. Linkugel, D.D.
Dionysiou, The effect of solvent in the sol–gel synthesis of visible
light-activated, sulfur-doped TiO2 nanostructured porous films
for water treatment, Catal. Today, 224 (2014) 132–139.
- L. Chen, C. Huang, C. Gao, A comparative study of the effects
of In2O3 and SnO2 modification on the photocatalytic activity
and characteristics of TiO2, Chem. Eng. J., 175 (2011) 49–55.
- J. Liu, R. Han, H. Wang, Y. Zhao, W. Lu, H. Wu, Degradation
of PCP-Na with La–B co-doped TiO2 series synthesized by the
sol–gel hydrothermal method under visible and solar light
irradiation, J. Mol. Catal. A, 344 (2011) 145–152.
- D.M. Tobaldi, C. Piccirillo, N. Rozman, R.C. Pullar, M.P. Seabra,
A.S. Škapin, P.M.L. Castro, J.A. Labrincha, Effects of Cu, Zn and
Cu-Zn addition on the microstructure and antibacterial and
photocatalytic functional properties of Cu-Zn modified TiO2
nano-heterostructures, J. Photochem. Photobiol. A, 330 (2016)
44–54.
- K.M. Kotesh, K. Bhavani, G. Naresh, B. Srinivas, A. Venugopal,
Plasmonic resonance nature of Ag-Cu/TiO2 photocatalyst
under solar and artificial light: synthesis, characterization and
evaluation of H2O splitting activity, Appl. Catal. B, 199 (2016)
282–291.
- A. Sasani, A. Baktash, K. Mirabbaszadeh, B. Khoshnevisan,
Structural and electronic properties of Mg and Mg-Nb
co-doped TiO2 (101) anatase surface, Appl. Surf. Sci., 384 (2016)
298–303.
- W. Zhang, C. Li, Z. Ma, L. Yang, H. He, Effects of calcination
temperature on properties of 0.5%Al-3%In-TiO2 photocatalyst
prepared using sol-gel method, J. Adv. Oxid. Technol., 19 (2016)
119–124.
- S.K. Kansal, S. Sood, A. Umar, Photocatalytic degradation of
Eriochrome Black T dye using well-crystalline anatase TiO2 nanoparticles, J. Alloys Compd., 581 (2013) 392–397.
- J.L. Ropero-Vega, A. Aldana-perez, R. Gomez, Sulfated
titania [TiO2/SO42–]: a very active solid acid catalyst for the
esterification of free fatty acids with ethanol, Appl. Catal. A,
379 (2010) 24–29.
- S. Javaid, M.A. Farrukh, I. Muneer, Influence of optical band gap
and particle size on the catalytic properties of Sm/SnO2–TiO2
nanoparticles, Superlattices Microstruct., 82 (2015) 234–247.
- W. Zhang, T. Hu, B. Yang, P. Sun, H. He, The effect of boron
content on properties of B-TiO2 photocatalyst prepared by solgel
method, J. Adv. Oxid. Technol., 16 (2013) 261–267.
- J. Tauc, R. Grigorovici, A. Vancu, Optical properties and
electronic structure of amorphous germanium, Phys. Status
Solidi B, 15 (1966) 627–637.