References

  1. A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol., C, 1 (2000) 1–21.
  2. W. Zhang, Y. Li, F. Wang, Properties of TiO2 thin films prepared by magnetron sputtering, J. Mater. Sci. Technol., 18 (2002) 101–107.
  3. D. Chatterjee, S. Dasgupta, Visible light induced photocatalytic degradation of organic pollutants, J. Photochem. Photobiol., C, 6 (2005) 186–205.
  4. W. Zhang, Z. Ma, K. Li, L. Yang, H. Li, H. He, Sol-gel synthesis of nano-sized TiO2 supported on HZSM-5, Curr. Nanosci., 12 (2016) 514–519.
  5. P. Zhou, J. Wu, W. Yu, G. Zhao, G. Fang, S. Cao, Vectorial doping-promoting charge transfer in anatase TiO2 {0 0 1} surface, Appl. Surf. Sci., 319 (2014) 167–172.
  6. Y. Ku, S. Shiu, H. Wu, Decomposition of dimethyl phthalate in aqueous solution by UV–LED/TiO2 process under periodic illumination, J. Photochem. Photobiol., A, 332 (2017) 299–305.
  7. M. Bellardita, A. Paola, B. Megna, L. Palmisano, Absolute crystallinity and photocatalytic activity of brookite TiO2 samples, Appl. Catal., B, 201 (2017) 150–158.
  8. M. Tahir, B. Tahir, N. Saidina Amin, H. Alias, Selective photocatalytic reduction of CO2 by H2O/H2 to CH4 and CH3OH over Cu-promoted In2O3/TiO2 nanocatalyst, Appl. Surf. Sci., 389 (2016) 46–55.
  9. J.B. Cai, X.Q. Wu, S.X. Li, F.Y. Zheng, Controllable location of Au nanoparticles as cocatalyst onto TiO2@CeO2 nanocomposite hollow spheres for enhancing photocatalytic activity, Appl. Catal. B, 201 (2017) 12–21.
  10. W.K. Jo, S. Kumar, M.A. Isaacs, A.F. Lee, S. Karthikeyan, Cobalt promoted TiO2/GO for the photocatalytic degradation of oxytetracycline and Congo Red, Appl. Catal. B, 201 (2017) 159–168.
  11. J. Yu, J. Xiong, B. Cheng, S. Liu, Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity, Appl. Catal. B, 60 (2005) 211–221.
  12. J. Du, X. Li, K. Li, X. Gu, W. Qi, K. Zhang, High hydrophilic Si-doped TiO2 nanowires by chemical vapor deposition, J. Alloys Compd., 687 (2016) 893–897.
  13. A. Juma, I.O. Acik, A.T. Oluwabi, A. Mere, V. Mikli, M. Danilson, M. Krunks, Zirconium doped TiO2 thin films deposited by chemical spray pyrolysis, Appl. Surf. Sci., 387 (2016) 539–545.
  14. W. Zhang, X. Pei, B. Yang, H. He, Effects of boron content and calcination temperature on properties of B-TiO2 photocatalyst prepared by solvothermal method, J. Adv. Oxid. Technol., 17 (2014) 66–72.
  15. E.B. Simsek, Solvothermal synthesized boron doped TiO2 catalysts: photocatalytic degradation of endocrine disrupting compounds and pharmaceuticals under visible light irradiation, Appl. Catal. B, 200 (2017) 309–322.
  16. C. Han, J. Andersen, V. Likodimos, P. Falaras, J. Linkugel, D.D. Dionysiou, The effect of solvent in the sol–gel synthesis of visible light-activated, sulfur-doped TiO2 nanostructured porous films for water treatment, Catal. Today, 224 (2014) 132–139.
  17. L. Chen, C. Huang, C. Gao, A comparative study of the effects of In2O3 and SnO2 modification on the photocatalytic activity and characteristics of TiO2, Chem. Eng. J., 175 (2011) 49–55.
  18. J. Liu, R. Han, H. Wang, Y. Zhao, W. Lu, H. Wu, Degradation of PCP-Na with La–B co-doped TiO2 series synthesized by the sol–gel hydrothermal method under visible and solar light irradiation, J. Mol. Catal. A, 344 (2011) 145–152.
  19. D.M. Tobaldi, C. Piccirillo, N. Rozman, R.C. Pullar, M.P. Seabra, A.S. Škapin, P.M.L. Castro, J.A. Labrincha, Effects of Cu, Zn and Cu-Zn addition on the microstructure and antibacterial and photocatalytic functional properties of Cu-Zn modified TiO2 nano-heterostructures, J. Photochem. Photobiol. A, 330 (2016) 44–54.
  20. K.M. Kotesh, K. Bhavani, G. Naresh, B. Srinivas, A. Venugopal, Plasmonic resonance nature of Ag-Cu/TiO2 photocatalyst under solar and artificial light: synthesis, characterization and evaluation of H2O splitting activity, Appl. Catal. B, 199 (2016) 282–291.
  21. A. Sasani, A. Baktash, K. Mirabbaszadeh, B. Khoshnevisan, Structural and electronic properties of Mg and Mg-Nb co-doped TiO2 (101) anatase surface, Appl. Surf. Sci., 384 (2016) 298–303.
  22. W. Zhang, C. Li, Z. Ma, L. Yang, H. He, Effects of calcination temperature on properties of 0.5%Al-3%In-TiO2 photocatalyst prepared using sol-gel method, J. Adv. Oxid. Technol., 19 (2016) 119–124.
  23. S.K. Kansal, S. Sood, A. Umar, Photocatalytic degradation of Eriochrome Black T dye using well-crystalline anatase TiO2 nanoparticles, J. Alloys Compd., 581 (2013) 392–397.
  24. J.L. Ropero-Vega, A. Aldana-perez, R. Gomez, Sulfated titania [TiO2/SO42–]: a very active solid acid catalyst for the esterification of free fatty acids with ethanol, Appl. Catal. A, 379 (2010) 24–29.
  25. S. Javaid, M.A. Farrukh, I. Muneer, Influence of optical band gap and particle size on the catalytic properties of Sm/SnO2–TiO2 nanoparticles, Superlattices Microstruct., 82 (2015) 234–247.
  26. W. Zhang, T. Hu, B. Yang, P. Sun, H. He, The effect of boron content on properties of B-TiO2 photocatalyst prepared by solgel method, J. Adv. Oxid. Technol., 16 (2013) 261–267.
  27. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium, Phys. Status Solidi B, 15 (1966) 627–637.