References

  1. S.A. Kalogirou, Seawater desalination using renewable energy sources, Prog. Energy Combust., 31 (2005) 242–281.
  2. D.S. Likhachev, F.-C. Li, Large-scale water desalination methods: a review and new perspectives, Desal. Wat. Treat., 51 (2013) 2836–2849.
  3. R.G. Raluy, L. Serra, J. Uche, Life cycle assessment of desalination technologies integrated with renewable energies, Desalination, 183 (2005) 81–93.
  4. R. Semiat, D. Hasson, Water desalination, Rev. Chem. Eng., 28 (2012) 43–60.
  5. J. Tonner, Barriers to Thermal Desalination in the United States, Bureau of Reclamation, Denver, CO, 2008.
  6. A. Ophir, F. Lokiec, Advanced MED process for most economical sea water desalination, Desalination, 182 (2005) 187–198.
  7. M.A. Eltawil, Z. Zhengming, L. Yuan, A review of renewable energy technologies integrated with desalination systems, Renew. Sust. Energy Rev., 13 (2009) 2245–2262.
  8. A. Hanson, W. Zachritz, K. Stevens, L. Mimbela, R. Polka, L. Cisneros, Distillate water quality of a single-basin solar still: laboratory and field studies, Sol. Energy, 76 (2004) 635–645.
  9. S. Kalogirou, Survey of solar desalination systems and system selection, Energy, 22 (1997) 69–81.
  10. B.A. Stewart, R. Lal, Advances in Soil Science, Springer-Verlag New York Inc., New York, NY, 1985.
  11. L. Kelley, H. Elasaad, S. Dubowsky, Autonomous operation and maintenance of small-scale PVRO systems for remote communities, Desal. Wat. Treat., 55 (2015) 1–13.
  12. H.T. El-Dessouky, H.M. Ettouney, Multiple-effect evaporation desalination systems. thermal analysis, Desalination, 125 (1999) 259–276.
  13. H.T. El-Dessouky, H.M. Ettouney, F. Mandani, Performance of parallel feed multiple effect evaporation system for seawater desalination, Appl. Thermal Eng., 20 (2000) 1679–1706.
  14. C.C.K. Liu, Wind-Powered Reverse Osmosis Water Desalination for Pacific Islands and Remote Coastal Communities, Bureau of Reclamation, Denver, CO, 2009.
  15. A.D. Khawaji, I.K. Kutubkhanah, J.-M. Wie, Advances in seawater desalination technologies, Desalination, 221 (2008) 47–69.
  16. A. Al-Karaghouli, L.L. Kazmerski, Energy consumption and water production cost of conventional and renewable-energy powered desalination processes, Renew. Sust. Energy Rev., 24 (2013) 343–356.
  17. L. Garcia-Rodriguez, Renewable energy applications in desalination: state of the art, Solar Energy, 75 (2003) 381–393.
  18. L. García-Rodríguez, C. Gómez-Camacho, Perspectives of solarassisted seawater distillation, Desalination, 136 (2001) 213–218.
  19. L. García-Rodríguez, A.I. Palmero-Marrero, C. Gómez-Camacho, Application of direct steam generation into a solar parabolic trough collector to multieffect distillation, Desalination, 125 (1999) 139–145.
  20. L. García-Rodríguez, A.I. Palmero-Marrero, C. Gómez-Camacho, Comparison of solar thermal technologies for applications in seawater desalination, Desalination, 142 (2002) 135–142.
  21. V.G. Gude, N. Nirmalakhandan, S. Deng, Desalination using solar energy: towards sustainability, Energy, 36 (2011) 78–85.
  22. A. Al-Karaghouli, D. Renne, L.L. Kazmerski, Solar and wind opportunities for water desalination in the Arab regions, Renew. Sust. Energy Rev., 13 (2009) 2397–2407.
  23. C.T. Kiranoudis, N.G. Voros, Z.B. Maroulis, Wind energy exploitation for reverse osmosis desalination plants, Desalination, 109 (1997) 195–209.
  24. M.S. Miranda, D. Infield, A wind-powered seawater reverseosmosis system without batteries, Desalination, 153 (2003) 9–16.
  25. Q. Ma, H. Lu, Wind energy technologies integrated with desalination systems: review and state-of-the-art, Desalination, 277 (2011) 274–280.
  26. A. Ophir, Desalination plant using low grade geothermal heat, Desalination, 40 (1982) 125–132.
  27. L. Awerbuch, T.E. Lindemuth, S.C. May, A.N. Rogers, Geothermal energy recovery process, Desalination, 19 (1976) 325–336.
  28. K. Bourouni, R. Martin, L. Tadrist, Analysis of heat transfer and evaporation in geothermal desalination units, Desalination, 122 (1999) 301–313.
  29. L. Begrambekov, A. Gordeev, S. Vergasov, A. Zakharov, Desalination device for arid areas, Desal. Wat. Treat., 31 (2011) 387–391.
  30. R. Robinson, G. Ho, K. Mathew, Development of a reliable lowcost reverse osmosis desalination unit for remote communities, Desalination, 86 (1992) 9–26.
  31. A. Isci, G.N. Demirer, Biogas production potential from cotton wastes, Renew. Energy, 32 (2007) 750–757.
  32. J.M. Lillywhite, R. Heerema, J.E. Simonsen, E. Herrera, Pecan Marketing Channels in New Mexico, Guide Z-307, New Mexico State University Cooperative Extension Service, Las Cruces, NM, 2010.
  33. X. Cao, W. Harris, Properties of dairy-manure-derived biochar pertinent to its potential use in remediation, Bioresour. Technol., 101 (2010) 5222–5228.
  34. D.R. Hill, A.A. Jennings, Bioasphalt from Urban Yard Waste Carbonization: A Student Study, Ohio Department of Transportation, 2011.
  35. M. Wright, R.C. Brown, Establishing the optimal sizes of different kinds of biorefineries, Biofuels Bioprod. Biorefin., 1 (2007) 191–200.
  36. J. Lehmann, J. Pereira da Silva, C. Steiner, T. Nehls, W. Zech, B. Glaser, Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments, Plant Soil, 249 (2003) 343–357.
  37. R. Lal, Black and buried carbons’ impact on soil quality and ecosystem services, Soil Till. Res., 99 (2008) 1–3.
  38. Y. Lee, P.-R.-B. Eum, C. Ryu, Y.-K. Park, J.-H. Jung, S. Hyun, Characteristics of biochar produced from slow pyrolysis of Geodae-Uksae 1, Bioresour. Technol., 130 (2013) 345–350.
  39. A.N. Phan, C. Ryu, V.N. Sharifi, J. Swithenbank, Characterisation of slow pyrolysis products from segregated wastes for energy production, J. Anal. Appl. Pyrol., 81 (2008) 65–71.
  40. J. Martinez Beltran, S. Koo-Oshima, Water Desalination for Agricultural Applications, Food and Agriculture Organization of United Nations, Rome, 2004.
  41. P.K. Sen, P.V. Sen, A. Mudgal, S.N. Singh, S.K. Vyas, P. Davies, A small scale multiple-effect distillation (MED) unit for rural micro enterprises: part I--design and fabrication, Desalination, 279 (2011) 15–26.
  42. H.T. El-Dessouky, H.M. Ettouney, Fundamentals of Salt Water Desalination, Elsevier, Amsterdam, 2002.
  43. A.A. Delyannis, E.A. Delyannis, Sauerstoff: Anhangband Water Desalting Wasser-Entsalzung, Springer-Verlag Berlin, 2013.
  44. H. El-Dessouky, I. Alatiqi, S. Bingulac, H. Ettouney, Steadystate analysis of the multiple effect evaporation desalination process, Chem. Eng. Technol., 21 (1998) 437–451.
  45. I.S. Al –Mutaz, A.A. Al- Mojjly, M.E. Abashar, Thermal and Brine Dispersion from Coastal MSF Desalination Plants, King Saud University, Saudi Arabia.
  46. A. Christ, K. Regenauer-Lieb, H.T. Chua, Thermodynamic optimisation of multi effect distillation driven by sensible heat sources, Desalination, 336 (2014) 160–167.
  47. B. Rahimi, A. Christ, K. Regenauer-Lieb, H.T. Chua, A novel process for low grade heat driven desalination, Desalination, 351 (2014) 202–212.
  48. M.A. Darwish, H.K. Abdulrahim, Feed water arrangements in a multi-effect desalting system, Desalination, 228 (2008) 30–54.
  49. M.C. Georgiou, A.M. Bonanos, A transient model for forward and parallel feed MED, Desal. Wat. Treat., 57 (2016) 23119–23131.
  50. P. Palenzuela, D. Alarcón, G. Zaragoza, J. Blanco, M. Ibarra, Parametric equations for the variables of a steady-state model of a multi-effect desalination plant, Desal. Wat. Treat., 51 (2013) 1229–1241.
  51. A. Christ, X. Wang, K. Regenauer-Lieb, H.T. Chua, Low-grade waste heat desalination technology, Int. J. Simul. Multidiscip. Design Optim., 7 (2014) 1–6.
  52. W. Wijayantia, K.I. Tanoue, Char formation and gas products of woody biomass pyrolysis, Energy Procedia, 32 (2013) 145–152.
  53. K.H. Kim, X. Bai, M. Rover, R.C. Brown, The effect of lowconcentration oxygen in sweep gas during pyrolysis of red oak using a fluidized bed reactor, Fuel, 124 (2014) 49–56.
  54. R.C. Brown, T.R. Brown, Biorenewable Resources, Wiley Blackwell, Ames, IA, 2014.
  55. T.R. Brown, M.M. Wright, R.C. Brown, Estimating profitability of two biochar production scenarios: slow pyrolysis vs fast pyrolysis, Biofuels Bioprod. Biorefin., 5 (2011) 54–68.
  56. N.M. Wade, Distillation plant development and cost update, Desalination, 136 (2001) 3–12.
  57. N. Kulyk, Cost-Benefit Analysis of the Biochar Application in the U.S. Cereal Crop Cultivation, University of Massachusetts- Amherst, 2012.
  58. State Electricity Profiles, U.S. Department of Energy, 2016. Available at: http://www.eia.gov/electricity/state/.
  59. S. Loutatidou, H.A. Arafat, Techno-economic analysis of MED and RO desalination powered by low-enthalpy geothermal energy, Desalination, 365 (2015) 277–292.
  60. A.E. Al-Rawajfeh, S. Ihm, H. Varshney, A.N. Mabrouk, Scale formation model for high top brine temperature multi-stage flash (MSF) desalination plants, Desalination, 350 (2014) 53–60.
  61. A. Altaee, A. Mabrouk, K. Bourouni, P. Palenzuela, Forward osmosis pretreatment of seawater to thermal desalination: high temperature FO-MSF/MED hybrid system, Desalination, 339 (2014) 18–25.
  62. C. Sommariva, Thermal Desalination Processes and Economics, International Desalination Association, 2017. Available at: https://ocw.mit.edu/courses/mechanical-engineering/2-500-desalination-and-water-purification-spring-2009/readings/MIT2_500s09_lec18.pdf.
  63. L. Yang, S. Shen, H. Hu, Thermodynamic performance of a low temperature multi-effect distillation experimental unit with horizontal-tube falling film evaporation, Desal. Wat. Treat., 33 (2011) 202–208.
  64. X. Wang, A. Christ, K. Regenauer-Lieb, K. Hooman, H.T. Chua, Low grade heat driven multi-effect distillation technology, Int. J. Heat Mass Transfer, 54 (2011) 5497–5503.
  65. H. Shih, Evaluating the technologies of thermal desalination using low-grade heat, Desalination, 182 (2005) 461–469.
  66. H. Liu, G. Qiu, Y. Shao, F. Daminabo, S.B. Riffat, Preliminary experimental investigations of a biomass-fired micro-scale CHP with organic Rankine cycle, Int. J. Low Carbon Technol., 5 (2010) 81–87.
  67. G. Pei, J. Li, Y. Li, D. Wang, J. Ji, Construction and dynamic test of a small-scale organic rankine cycle, Energy, 36 (2011) 3215–3223.
  68. L. Dong, H. Liu, S. Riffat, Development of small-scale and micro-scale biomass-fuelled CHP systems – a literature review, Appl. Thermal Eng., 29 (2009) 2119–2126.
  69. S.R. Wood, P.N. Rowley, A techno-economic analysis of smallscale, biomass-fuelled combined heat and power for community housing, Biomass Bioenergy, 35 (2011) 3849–3858.
  70. S.A. Avlonitis, K. Kouroumbas, N. Vlachakis, Energy consumption and membrane replacement cost for seawater RO desalination plants, Desalination, 157 (2003) 151–158.
  71. R. Semiat, Energy issues in desalination processes, Environ. Sci. Technol., 42 (2008) 8193–8201.
  72. H. El-Dessouky, H. Ettouney, I. Alatiqi, G. Al-Nuwaibit, Evaluation of steam jet ejectors, Chem. Eng. Process., 41 (2002) 551–561.
  73. E.H. Ezechi, M.H. Isa, S.R.B.M. Kutty, Boron in produced water: challenges and improvements: a comprehensive review, J. Appl. Sci., 12 (2012) 402.
  74. L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin, Reverse osmosis desalination: water sources, technology, and today’s challenges, Water Res., 43 (2009) 2317–2348.
  75. P. Glueckstern, M. Priel, Boron removal in brackish water desalination systems, Desalination, 205 (2007) 178–184.
  76. M. Ahmed, W.H. Shayya, D. Hoey, A. Mahendran, R. Morris, J. Al-Handaly, Use of evaporation ponds for brine disposal in desalination plants, Desalination, 130 (2000) 155–168.
  77. L. Katzir, Y. Volkmann, N. Daltrophe, E. Korngold, R. Mesalem, Y. Oren, J. Gilron, WAIV - Wind aided intensified evaporation for brine volume reduction and generating mineral byproducts, Desal. Wat. Treat., 13 (2010) 63–73.
  78. G. Fipps, Irrigation Water Quality Standards and Salinity Management Strategies, Texas A&M AgriLife Extension, 2013.
  79. S. Shabangu, D. Woolf, E.M. Fisher, L.T. Angenent, J. Lehmann, Techno-economic assessment of biomass slow pyrolysis into different biochar and methanol concepts, Fuel, 117 (2014) 742–748.