References

  1. Y. Cheng, Effective organochlorine pesticides removal from aqueous systems by magnetic nanospheres coated with polystyrene, J. Wuhan Univ. Technol., Mater. Sci. Ed., 29 (2014) 168–173.
  2. L. Zhao, H.K. Lee, Application of static liquid-phase microextraction to the analysis of organochlorine pesticides in water, J. Chromatogr., A, 919 (2001) 381–388.
  3. S. Ghosh, S.K. Das, A.K. Guha, A.K. Sanyal, Adsorption behavior of lindane on Rhizopus oryzae biomass: physicochemical studies, J. Hazard. Mater., 172 (2009) 485–490.
  4. M. Kata, G. Ramana, Research article removal of lindane (Γ – HCH) by using natural zeolite in industrial wastewater, Int. J. Recent Sci. Res., 5 (2014) 915–917.
  5. A. Tor, M.E. Aydin, S. Aydin, M. Tabakci, F. Beduk, Removal of lindane from an aqueous solution by using aminopropyl silica gel-immobilized calix [6] arene, J. Hazard. Mater., 262 (2013) 656–663.
  6. A.A. El-Kady, R. Carleer, J. Yperman, J.Y. Farah, Optimum conditions for adsorption of Lindane by activated carbon derived from date stones, World Appl. Sci. J., 27 (2013) 269–279.
  7. B. Camacho-Pérez, E. Ríos-Leal, N. Rinderknecht-Seijas, H.M. Poggi-Varaldo, Enzymes involved in the biodegradation of hexachlorocyclohexane: a mini review, J. Environ. Manage., 95 (2012) S306–S318.
  8. R. Singh, A. Singh, V. Misra, R.P. Singh, Degradation of lindane contaminated soil using zero-valent iron nanoparticles, J. Biomed. Nanotechnol., 7 (2011) 175–176.
  9. A. Ulčnik, I.K. Cigić, F. Pohleven, Degradation of lindane and endosulfan by fungi, fungal and bacterial laccases, World J. Microbiol. Biotechnol., 29 (2013) 2239–2247.
  10. V. Nagpal, M. Srinivasan, K. Paknikar, Biodegradation of γ-hexachlorocyclohexane (Lindane) by a non-white rot fungus conidiobolus 03-1-56 isolated from litter, Indian J. Microbiol., 48 (2008) 134–141.
  11. J.A. Salam, N. Das, Remediation of lindane from environment-an overview, Int. J. Adv. Biol. Res., 2 (2012) 9–15.
  12. J. Benner, D.E. Helbling, H.P. Kohler, J. Wittebol, E. Kaiser, C. Prasse, T.A. Ternes, C.N. Albers, J. Aamand, B. Horemans, D. Springael, Is biological treatment a viable alternative for micropollutant removal in drinking water treatment processes? Water Res., 47 (2013) 5955–5976.
  13. J. Senthilnathan, L. Philip, Photocatalytic degradation of lindane under UV and visible light using N-doped TiO2, Chem. Eng. J., 161 (2010) 83–92.
  14. NTP, 12th Report on Carcinogens, Twelfth ed., U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program, Research Triangle Park, NC, 2011.
  15. World Health Organization, Guidelines for Drinking-Water Quality: World Health Organization, Distribution and Sales, Geneva 27, CH-1211 Switzerland, 2004.
  16. I. Nitoi, T. Oncescu, P. Oancea, Mechanism and kinetic study for the degradation of lindane by photo-Fenton process, J. Ind. Eng. Chem., 19 (2013) 305–309.
  17. J.M. Saez, C.S. Benimeli, M.J. Amoroso, Lindane removal by pure and mixed cultures of immobilized actinobacteria, Chemosphere, 89 (2012) 982–987.
  18. S. Heijman, W. Siegers, R. Sterk, R. Hopman, Prediction of breakthrough of pesticides in GAC-filters and breakthrough of colour in ion-exchange-filters, Water Sci. Technol. Water Supply, 2 (2002) 103–108.
  19. H. Suty, C. De Traversay, M. Cost, Applications of advanced oxidation processes: present and future, Water Sci. Technol., 49 (2004) 227–233.
  20. O. Modin, K. Fukushi, K. Yamamoto, Simultaneous removal of nitrate and pesticides from groundwater using a methanefed membrane biofilm reactor, Water Sci. Technol., 58 (2008) 1273–1279.
  21. M. Wegelin, Surface Water Treatment by Roughing Filters: a Design, Construction and Operation Manual, SANDEC, 1996.
  22. J. Vandermaesen, A. Deckers, E. Walravens, D. Springael, Pesticide Mineralization in Sand Filter Material Taken from Drinking Water Production Facilities, Proc. 2nd European Symposium, 20–21 November, VITO, 2013, pp. 27–32.
  23. M. Bahgat, A. Dewedar, A. Zayed, Sand-filters used for wastewater treatment: buildup and distribution of microorganisms, Water Res., 33 (1999) 1949–1955.
  24. C.B. Corfitzen, H.J. Albrechtsen, E. Arvin, Removal of the Phenoxyacide Herbicide Mecoprop (MCPP) in Water Works Rapid Sandfilters, Water Quality Technology Conference and Exposition (WQTC), Quality Water in a High-Tech Environment, November 15–19, Seattle, WA, Proc. American Water Works Association, Denver, CO, 2009.
  25. L. Feld, T.K. Nielsen, L.H. Hansen, J. Aamand, C.N. Albers, Establishment of bacterial herbicide degraders in a rapid sand filter for bioremediation of phenoxypropionate-polluted groundwater, Appl. Environ. Microbiol., 82 (2016) 878–887.
  26. M.J. Hedegaard, H.J. Albrechtsen, Microbial pesticide removal in rapid sand filters for drinking water treatment–potential and kinetics, Water Res., 48 (2014) 71–81.
  27. F.Y. Saleh, K.L. Dickson, J.H. Rodgers, Fate of lindane in the aquatic environment: rate constants of physical and chemical processes, Environ. Toxicol. Chem., 1 (1982) 289–297.
  28. J.S. Yang, M.J. Kwon, Y.T. Park, J. Choi, Adsorption of arsenic from aqueous solutions by iron oxide coated sand fabricated with acid mine drainage, Sep. Sci. Technol., 50 (2015) 267–275.
  29. M.M. Amin, A. Rahimi, B. Bina, F. Mohammadi Moghadam, H. Nourmoradi, M. Heidari, Effect of a non‐ionic surfactant on xylene removal in a scoria‐compost‐based biofilter, Clean Soil Air Water, 44 (2016) 1759–1765.
  30. APHA, AWWA, WEF, Standard Methods for the Examination of Water and Wastewater, Washington, D.C., USA, 2005.
  31. N. Nakamoto, N. Graham, R. Gimbel, Progress in Slow Sand and Alternative Biofiltration Processes (Chapter 27), IWA Publishing, 2014, pp. 195–202.
  32. N. Phu, Evaluating Pilot Scale Slow Sand Filtration Columns to Effectively Remove Emerging Contaminants in Recycled Water, University of California, 2016. Available at: http://escholarship.org/uc/item/8hx0s0mv.