References

  1. F. Fang, B. Ni, W. Li, G. Sheng, H.A. Yu, Simulation-based integrated approach to optimize the biological nutrient removal process in a full-scale wastewater treatment plant, Chem. Eng. J., 174 (2011) 635–643.
  2. T.Y. Pai, Modeling nitrite and nitrate variations in A2O process under different return oxic mixed liquid using an extended model, Process Biochem., 42 (2007) 978–987.
  3. L.Y. Jin, G.M. Zhang, H.F. Tian, Current state of sewage treatment in China, Water Res., 66 (2014) 85–98.
  4. M. Hu, X.H. Wang, X.H. Wen, X. Yu, Microbial community structures in different wastewater treatment plants as revealed by 454-pyrosequencing analysis, Bioresour. Technol., 117 (2012) 72–79.
  5. A. Muszynski, A. Tabernacka, A. Miłobędzka, Long-term dynamics of the microbial community in a full-scale wastewater treatment plant, Int. Biodeterior. Biodegrad., 100 (2015) 44–51.
  6. J.M. Di Bellaa, Y. Baoa, B.G. Gregory, P.B. Jeremy, R. Gregor, High throughput sequencing methods and analysis for microbiome research, J. Microbiol. Methods, 95 (2013) 401–414.
  7. N.J. Loman, C. Constantinidou, J.Z. Chan, M. Halachev, M. Sergeant, C.W. Penn, E.R. Robinson, M.J. Pallen, Highthroughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity, Nat. Rev. Microbiol., 10 (2012) 599–606.
  8. J.J. Qin, R.Q. Li, J. Raes, M. Arumugam, K.S. Burgdorf, A human gut microbial gene catalogue established by metagenomic sequencing, Nature, 464 (2010) 59–65.
  9. K.L. Huang, X.X. Zhang, P. Shi, B. Wu, H.Q. Ren, A comprehensive insight into bacterial virulence in drinking water using 454-pyrosequencing and Illumina high-throughput sequencing, Ecotoxicol. Environ. Saf., 109 (2014) 15–21.
  10. T.F. Ducey, P.G. Hunt, Microbial community analysis of swine wastewater anaerobic lagoons by next-generation DNA sequencing, Anaerobe, 21 (2013) 50–57.
  11. L.Y. Lv, W.G. Li, C.D. Wu, L.Q. Meng, W. Qin, Microbial community composition and function in a pilot-scale anaerobicanoxic- aerobic combined process for the treatment of traditional Chinese medicine wastewater, Bioresour. Technol., 240 (2017) 84–93.
  12. T. Zhang, M.F. Shao, L. Ye, 454 pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants, ISME J., 6 (2012) 1137–1147.
  13. American Public Health Association (APHA), American Water Works Association (AWWA), Standard Methods for the Examination of Water and Wastewater, 22th ed., Washington, D.C., USA, 2012.
  14. J.G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F.D. Bushman, QIIME allows analysis of high-throughput community sequencing data, Nat. Methods, 7 (2010) 335–336.
  15. Q. Wang, G.M. Garrity, J.M. Tiedje, J.R. Cole, Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy, Appl. Environ. Microbiol., 73 (2007) 5261–5267.
  16. P.D. Schloss, S.L. Westcott, R. Thomas, J.R. Hall, H. Martin, Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities, Appl. Environ. Microbiol., 75 (2009) 7537–7541.
  17. X.Q. Ning, W.W. Qiao, L. Zhang, X. Gao, Microbial community in anoxic-oxic settling anaerobic sludge reduction process revealed by 454 pyrosequencing analysis, Can. J. Microbiol., 60 (2014) 799–809.
  18. B.C. Kim, S. Kim, T. Shin, H. Kim, B.I. Sang, Comparison of the bacterial communities in anaerobic, anoxic, and oxic chambers of a pilot A2O process using pyrosequencing analysis, Curr. Microbiol., 66 (2013) 555–565.
  19. S.L. McLellan, S.M. Huse, S.R. Mueller-Spitz, E.N. Andreishcheva, M.L. Sogin, Diversity and population structure of sewage derived microorganisms in wastewater treatment plant influent, Environ. Microbiol., 12 (2010) 378–392.
  20. Y. Yang, K. Yu, Y. Xia, F.T.K. Lau, D.T.W. Tang, Metagenomic analysis of sludge from full-scale anaerobic digesters operated in municipal wastewater treatment plants, Appl. Microbiol. Biotechnol., 98 (2014) 5709–5718.
  21. C. Sundberg, W.A. Al-Soud, M. Larsson, E. Alm, S.S. Yekta, 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters, FEMS Microbiol. Ecol., 85 (2013) 612–626.
  22. A.M. Ziganshin, J. Liebetrau, J. Proeter, S. Kleinsteuber, Microbial community structure and dynamics during anaerobic digestion of various agricultural waste materials, Appl. Microbiol. Biotechnol., 97 (2013) 5161–5174.
  23. L. Regueiro, P. Veiga, M. Figueroa, J. Alonso-Gutierrez, A.J.M. Stams, J.M. Lema, M. Carballa, Relationship between microbial activity and microbial community structure in six full-scale anaerobic digesters, Microbiol. Res., 167 (2012) 581–589.
  24. I. Vanwonterghem, P.D. Jensen, P.G. Dennis, P. Hugenholtz, K. Rabaey, G.W. Tyson, Deterministic processes guide longterm synchronised population dynamics in replicate anaerobic digesters, ISME J., 8 (2014) 2015–2028.
  25. M.V. Sizova, S.N. Doerfert, E. Gavrish, S.S. Epstein, TM7 detection in human microbiome: are PCR primers and FISH probes specific enough? J. Microbiol. Methods, 114 (2015) 51–53.
  26. X.S. He, J.S. McLean, A. Edlund, S. Yooseph, A.P. Hall, Cultivation of a human-associated TM7 phylotype reveals a reduced genome and epibiotic parasitic lifestyle, Proc. Natl. Acad. Sci. USA, 112 (2015) 244–249.
  27. J. Wang, R. Qi, M.M. Liu, Q. Li, H.P. Bao, Y.M. Li, S. Wang, V. Tandoi, M. Yang, The potential role of ‘Candidatus Microthrix parvicella’ in phosphorus removal during sludge bulking in two full-scale enhanced biological phosphorus removal plants, Water Sci. Technol., 70 (2014) 367–365.
  28. S. Rossetti, M.C. Tomei, P.H. Nielsen, V. Tandoi, ‘Microthrix parvicella’, a filamentous bacterium causing bulking and foaming in activated sludge systems: a review of current knowledge, FEMS Microbiol. Rev., 29 (2013) 49–64.
  29. Y. Xia, Y.H. Kong, T.R. Thomsen, P.H. Nielsen, Identification and ecophysiological characterization of epiphytic proteinhydrolyzing saprospiraceae (Candidatus Epiflobacter spp.) in activated sludge, Appl. Environ. Microbiol., 4 (2008) 2229–2238.
  30. M. Shi, L. Zou, X. Liu, Y. Gao, Z. Zhang, A novel bacterium Saprospira sp. strain PdY3 forms bundles and lyses cyanobacteria, Front. Biosci., 11 (2006) 1916–1923.
  31. J.H. Guo, Y.Z. Peng, B.J. Ni, X.Y. Han, L. Fan, Z.G. Yuan, Dissecting microbial community structure and methaneproducing pathways of a full-scale anaerobic reactor digesting activated sludge from wastewater treatment by metagenomic sequencing, Microb. Cell Fact., 14 (2015) 1–11.
  32. Y. Zhao, J. Huang, H. Zhao, H. Yang, Microbial community and N removal of aerobic granular sludge at high COD and N loading rates, Bioresour. Technol., 143 (2013) 439–446.
  33. X.Y. Fan, J.F. Gao, K.L. Pan, D.C. Li, L.F. Zhang, S.J. Wang, Shifts in bacterial community composition and abundance of nitrifiers during aerobic granulation in two nitrifying sequencing batch reactors, Bioresour. Technol., 251 (2018) 99–107.
  34. W.L. Liu, Y.Z. Peng, B. Ma, L.N. Ma, F.X. Ji, X.Y. Li, Dynamics of microbial activities and community structures in activated sludge under aerobic starvation, Bioresour. Technol., 244 (2017) 588–596.
  35. K. Hashimoto, M. Matsuda, D. Inoue, M. Ike, Bacterial community dynamics in a full-scale municipal wastewater treatment plant employing conventional activated sludge process, J. Biosci. Bioeng., 118 (2014) 64–71.
  36. M. Matsuda, D. Inoue, Y. Anami, H. Tsutsui, K. Sei, S. Soda, M. Ike, Comparative analysis of DNA-based microbial community composition and substrate utilisation patterns of activated sludge microorganisms from wastewater treatment plants operated under different conditions, Water Sci. Technol., 61 (2010) 2843–2851.
  37. Q. Ma, Y.Y. Qu, W.L. Shen, Z. J. Zhang, J.W. Wang, Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing, Bioresour. Technol., 179 (2015) 436–443.
  38. W. Zeng, X.L. Bai, L.M. Zhang, A.Q. Wang, Y.Z. Peng, Population dynamics of nitrifying bacteria for nitritation achieved in Johannesburg (JHB) process treating municipal wastewater, Bioresour. Technol., 162 (2014) 30–37.