References

  1. G.K. Parshetti, S. Chowdhury, R. Balasubramanian, Hydrothermal conversion of urban food waste to chars for removal of textile dyes from contaminated waters, Bioresour. Technol., 161 (2014) 310–319.
  2. F.L. Braghiroli, V. Fierro, M.T. Izquierdo, J. Parmentier, A. Pizzi, A. Celzard, Kinetics of the hydrothermal treatment of tannin for producing carbonaceous microspheres, Bioresour. Technol., 151 (2014) 271–277.
  3. M.A. Islam, A. Benhouria, M. Asif, B.H. Hameed, Methylene blue adsorption on factory-rejected tea activated carbon prepared by conjunction of hydrothermal carbonization and sodium hydroxide activation processes, J. Taiwan Inst. Chem. Eng., 52 (2015) 57–64.
  4. A. Jain, R. Balasubramanian, M.P. Srinivasan, Production of high surface area mesoporous activated carbons from waste biomass using hydrogen peroxide-mediated hydrothermal treatment for adsorption applications, Chem. Eng. J., 273 (2015) 622–629.
  5. M. Sevilla, A.B. Fuertes, The production of carbon materials by hydrothermal carbonization of cellulose, Carbon, 47 (2009) 2281–2289.
  6. S. Kang, X. Li, J. Fan, J. Chang, Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, d-xylose, and wood meal, Ind. Eng. Chem. Res., 51 (2012) 9023–9031.
  7. A. Jain, R. Balasubramanian, M.P. Srinivasan, Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review, Chem. Eng. J., 283 (2016) 789–805.
  8. K. Sun, K. Ro, M. Guo, J. Novak, H. Mashayekhi, B. Xing, Sorption of bisphenol A, 17α-ethinyl estradiol and phenanthrene on thermally and hydrothermally produced biochars, Bioresour. Technol., 102 (2011) 5757–5763.
  9. K. Sun, B. Gao, K.S. Ro, J.M. Novak, Z. Wang, S. Herbert, B. Xing, Assessment of herbicide sorption by biochars and organic matter associated with soil and sediment, Environ. Pollut., 163 (2012) 167–173.
  10. B. Chen, Z. Chen, Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures, Chemosphere, 76 (2009) 127–133.
  11. C. Falco, J.P. Marco-Lozar, D. Salinas-Torres, E. Morallón, D. Cazorla-Amorós, M.M. Titirici, D. Lozano-Castelló, Tailoring the porosity of chemically activated hydrothermal carbons: influence of the precursor and hydrothermal carbonization temperature, Carbon, 62 (2013) 346–355.
  12. M.D. Huff, J.W. Lee, Biochar-surface oxygenation with hydrogen peroxide, J. Environ. Manage., 165 (2016) 17–21.
  13. J.T. Petrović, M.D. Stojanović, J.V. Milojković, M.S. Petrović, T.D. Šoštarić, M.D. Laušević, M.L. Mihajlović, Alkali modified hydrochar of grape pomace as a perspective adsorbent of Pb2+ from aqueous solution, J. Environ. Manage., 182 (2016) 292–300.
  14. Y. Xue, B. Gao, Y. Yao, M. Inyang, M. Zhang, A.R. Zimmerman, K.S. Ro, Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests, Chem. Eng. J., 200–202 (2012) 673–680.
  15. M.A. Islam, M.J. Ahmed, W.A. Khanday, M. Asif, B.H. Hameed, Mesoporous activated carbon prepared from NaOH activation of rattan (Lacosperma secundiflorum) hydrochar for methylene blue removal, Ecotoxicol. Environ. Saf., 138 (2017) 279–285.
  16. P. Regmi, J.L. Garcia Moscoso, S. Kumar, X. Cao, J. Mao, G. Schafran, Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process, J. Environ. Manage., 109 (2012) 61–69.
  17. K. Sun, J. Tang, Y. Gong, H. Zhang, Characterization of potassium hydroxide (KOH) modified hydrochars from different feedstocks for enhanced removal of heavy metals from water, Environ. Sci. Pollut. Res., 22 (2015) 16640–16651.
  18. X. Zuo, Z. Liu, M. Chen, Effect of H2O2 concentrations on copper removal using the modified hydrothermal biochar, Bioresour. Technol., 207 (2016) 262–267.
  19. Y. Li, A. Meas, S. Shan, R. Yang, X. Gai, Production and optimization of bamboo hydrochars for adsorption of Congo red and 2-naphthol, Bioresour. Technol., 207 (2016) 379–386.
  20. W. Bae, J. Kim, J. Chung, Production of granular activated carbon from food-processing wastes (walnut shells and jujube seeds) and its adsorptive properties, J. Air Waste Manage. Assoc., 64 (2014) 879–886.
  21. Y. Kar, Co-pyrolysis of walnut shell and tar sand in a fixed-bed reactor, Bioresour. Technol., 102 (2011) 9800–9805.
  22. E.I. Pujol Pereira, E.C. Suddick, J. Six, Carbon abatement and emissions associated with the gasification of walnut shells for bioenergy and biochar production, PLoS One, 11 (2016) e0150837.
  23. H.H. Hammud, A. Shmait, N. Hourani, Removal of Malachite Green from water using hydrothermally carbonized pine needles, RSC Adv., 5 (2015) 7909–7920.
  24. M. Ghaedi, H. Mazaheri, S. Khodadoust, S. Hajati, M.K. Purkait, Application of central composite design for simultaneous removal of methylene blue and Pb2+ ions by walnut wood activated carbon, Spectrochim. Acta Part A, 135 (2015) 479–490.
  25. L. Trakal, R. Šigut, H. Šillerová, D. Faturíková, M. Komárek, Copper removal from aqueous solution using biochar: effect of chemical activation, Arabian J. Chem., 7 (2014) 43–52.
  26. E. Unur, Functional nanoporous carbons from hydrothermally treated biomass for environmental purification, Microporous Mesoporous Mater., 168 (2013) 92–101.
  27. R. Xie, H. Wang, Y. Chen, W. Jiang, Walnut shell-based activated carbon with excellent copper (II) adsorption and lower chromium (VI) removal prepared by acid-base modification, Environ. Prog. Sustain. Energy, 32 (2013) 688–696.
  28. J.C. Tanger, K.S. Pitzer, Calculation of the ionization constant of H2O to 2273 K and 500 MPa, AIChE J., 35 (1989) 1631–1638.
  29. F.S. Asghari, H. Yoshida, Acid-catalyzed production of 5-hydroxymethyl furfural from D-fructose in subcritical water, Ind. Eng. Chem. Res., 45 (2006) 2163–2173.
  30. S.H. Wang, P.R. Griffiths, Resolution enhancement of diffuse reflectance Ir spectra of coals by Fourier self-deconvolution: 1. C-H stretching and bending modes, Fuel, 64 (1985) 229–236.
  31. H. Li, Y. Yang, S. Yang, A. Chen, D. Yang, Infrared spectroscopic study on the modified mechanism of aluminum-impregnated bone charcoal, J. Spectrosc., 2014 (2014) 1–7.
  32. B.H. Hameed, D.K. Mahmoud, A.L. Ahmad, Sorption equilibrium and kinetics of basic dye from aqueous solution using banana stalk waste, J. Hazard. Mater., 158 (2008) 499–506.
  33. S. Fan, Y. Wang, Z. Wang, J. Tang, J. Tang, X. Li, Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: adsorption kinetics, equilibrium, thermodynamics and mechanism, J. Environ. Chem. Eng., 5 (2017) 601–611.
  34. H. Yang, L. Weijun, W. Weiqing, F. Qiming, L. Jing, Synthesis of a carbon@ Rectorite nanocomposite adsorbent by a hydrothermal carbonization process and their application in the removal of methylene blue and neutral red from aqueous solutions, Desal. Wat. Treat., 57 (2016) 13573–13585.
  35. Y. Chen, J. Wang, Removal of radionuclide Sr2+ ions from aqueous solution using synthesized magnetic chitosan beads, Nucl. Eng. Des., 242 (2012) 445–451.
  36. S. Yeşim, A. Yücel, Mass transfer and equilibrium studies for the sorption of chromium ions onto chitin, Process Biochem., 36 (2000) 157–173.
  37. A. Saeed, M. Sharif, M. Iqbal, Application potential of grapefruit peel as dye sorbent: kinetics, equilibrium and mechanism of crystal violet adsorption, J. Hazard. Mater., 179 (2010) 564–572.
  38. M. Monier, D.M. Ayad, A.A. Sarhan, Adsorption of Cu(II), Hg(II), and Ni(II) ions by modified natural wool chelating fibers, J. Hazard. Mater., 176 (2010) 348–355.
  39. S. Largegren, About the theory of so-called adsorption of soluble substances, K. Sven. Vetenska.akad. Handl., 24 (1989) 1–39.
  40. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  41. H.M.F. Freundlich, On the adsorption in solution, J. Phys. Chem., 57 (1906) 385–471.
  42. I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids, J. Am. Chem. Soc., 38 (1916) 2221–2295.
  43. M.S. El-Geundi, Homogeneous surface diffusion model for the adsorption of basic dyestuffs onto natural clay in batch adsorbers, Adsorpt. Sci. Technol., 8 (1991) 217–225.
  44. H. Faghihian, M. Moayed, A. Firooz, M. Iravani, Synthesis of a novel magnetic zeolite nanocomposite for removal of Cs+ and Sr2+ from aqueous solution: kinetic, equilibrium, and thermodynamic studies, J. Colloid Interface Sci., 393 (2013) 445–451.