References
- G.K. Parshetti, S. Chowdhury, R. Balasubramanian,
Hydrothermal conversion of urban food waste to chars for
removal of textile dyes from contaminated waters, Bioresour.
Technol., 161 (2014) 310–319.
- F.L. Braghiroli, V. Fierro, M.T. Izquierdo, J. Parmentier, A. Pizzi,
A. Celzard, Kinetics of the hydrothermal treatment of tannin for
producing carbonaceous microspheres, Bioresour. Technol., 151
(2014) 271–277.
- M.A. Islam, A. Benhouria, M. Asif, B.H. Hameed, Methylene
blue adsorption on factory-rejected tea activated carbon
prepared by conjunction of hydrothermal carbonization and
sodium hydroxide activation processes, J. Taiwan Inst. Chem.
Eng., 52 (2015) 57–64.
- A. Jain, R. Balasubramanian, M.P. Srinivasan, Production of
high surface area mesoporous activated carbons from waste
biomass using hydrogen peroxide-mediated hydrothermal
treatment for adsorption applications, Chem. Eng. J., 273 (2015)
622–629.
- M. Sevilla, A.B. Fuertes, The production of carbon materials
by hydrothermal carbonization of cellulose, Carbon, 47 (2009)
2281–2289.
- S. Kang, X. Li, J. Fan, J. Chang, Characterization of hydrochars
produced by hydrothermal carbonization of lignin, cellulose,
d-xylose, and wood meal, Ind. Eng. Chem. Res., 51 (2012)
9023–9031.
- A. Jain, R. Balasubramanian, M.P. Srinivasan, Hydrothermal
conversion of biomass waste to activated carbon with high
porosity: a review, Chem. Eng. J., 283 (2016) 789–805.
- K. Sun, K. Ro, M. Guo, J. Novak, H. Mashayekhi, B. Xing, Sorption
of bisphenol A, 17α-ethinyl estradiol and phenanthrene on
thermally and hydrothermally produced biochars, Bioresour.
Technol., 102 (2011) 5757–5763.
- K. Sun, B. Gao, K.S. Ro, J.M. Novak, Z. Wang, S. Herbert, B.
Xing, Assessment of herbicide sorption by biochars and organic
matter associated with soil and sediment, Environ. Pollut., 163
(2012) 167–173.
- B. Chen, Z. Chen, Sorption of naphthalene and 1-naphthol by
biochars of orange peels with different pyrolytic temperatures,
Chemosphere, 76 (2009) 127–133.
- C. Falco, J.P. Marco-Lozar, D. Salinas-Torres, E. Morallón, D.
Cazorla-Amorós, M.M. Titirici, D. Lozano-Castelló, Tailoring
the porosity of chemically activated hydrothermal carbons:
influence of the precursor and hydrothermal carbonization
temperature, Carbon, 62 (2013) 346–355.
- M.D. Huff, J.W. Lee, Biochar-surface oxygenation with
hydrogen peroxide, J. Environ. Manage., 165 (2016) 17–21.
- J.T. Petrović, M.D. Stojanović, J.V. Milojković, M.S. Petrović,
T.D. Šoštarić, M.D. Laušević, M.L. Mihajlović, Alkali modified
hydrochar of grape pomace as a perspective adsorbent of Pb2+
from aqueous solution, J. Environ. Manage., 182 (2016) 292–300.
- Y. Xue, B. Gao, Y. Yao, M. Inyang, M. Zhang, A.R. Zimmerman,
K.S. Ro, Hydrogen peroxide modification enhances the
ability of biochar (hydrochar) produced from hydrothermal
carbonization of peanut hull to remove aqueous heavy metals:
batch and column tests, Chem. Eng. J., 200–202 (2012) 673–680.
- M.A. Islam, M.J. Ahmed, W.A. Khanday, M. Asif, B.H. Hameed,
Mesoporous activated carbon prepared from NaOH activation
of rattan (Lacosperma secundiflorum) hydrochar for methylene
blue removal, Ecotoxicol. Environ. Saf., 138 (2017) 279–285.
- P. Regmi, J.L. Garcia Moscoso, S. Kumar, X. Cao, J. Mao, G.
Schafran, Removal of copper and cadmium from aqueous
solution using switchgrass biochar produced via hydrothermal
carbonization process, J. Environ. Manage., 109 (2012) 61–69.
- K. Sun, J. Tang, Y. Gong, H. Zhang, Characterization of
potassium hydroxide (KOH) modified hydrochars from
different feedstocks for enhanced removal of heavy metals from
water, Environ. Sci. Pollut. Res., 22 (2015) 16640–16651.
- X. Zuo, Z. Liu, M. Chen, Effect of H2O2 concentrations on copper
removal using the modified hydrothermal biochar, Bioresour.
Technol., 207 (2016) 262–267.
- Y. Li, A. Meas, S. Shan, R. Yang, X. Gai, Production and
optimization of bamboo hydrochars for adsorption of Congo
red and 2-naphthol, Bioresour. Technol., 207 (2016) 379–386.
- W. Bae, J. Kim, J. Chung, Production of granular activated
carbon from food-processing wastes (walnut shells and jujube
seeds) and its adsorptive properties, J. Air Waste Manage.
Assoc., 64 (2014) 879–886.
- Y. Kar, Co-pyrolysis of walnut shell and tar sand in a fixed-bed
reactor, Bioresour. Technol., 102 (2011) 9800–9805.
- E.I. Pujol Pereira, E.C. Suddick, J. Six, Carbon abatement and
emissions associated with the gasification of walnut shells
for bioenergy and biochar production, PLoS One, 11 (2016)
e0150837.
- H.H. Hammud, A. Shmait, N. Hourani, Removal of Malachite
Green from water using hydrothermally carbonized pine
needles, RSC Adv., 5 (2015) 7909–7920.
- M. Ghaedi, H. Mazaheri, S. Khodadoust, S. Hajati, M.K. Purkait,
Application of central composite design for simultaneous
removal of methylene blue and Pb2+ ions by walnut wood
activated carbon, Spectrochim. Acta Part A, 135 (2015) 479–490.
- L. Trakal, R. Šigut, H. Šillerová, D. Faturíková, M. Komárek,
Copper removal from aqueous solution using biochar: effect of
chemical activation, Arabian J. Chem., 7 (2014) 43–52.
- E. Unur, Functional nanoporous carbons from hydrothermally
treated biomass for environmental purification, Microporous
Mesoporous Mater., 168 (2013) 92–101.
- R. Xie, H. Wang, Y. Chen, W. Jiang, Walnut shell-based activated
carbon with excellent copper (II) adsorption and lower
chromium (VI) removal prepared by acid-base modification,
Environ. Prog. Sustain. Energy, 32 (2013) 688–696.
- J.C. Tanger, K.S. Pitzer, Calculation of the ionization constant of
H2O to 2273 K and 500 MPa, AIChE J., 35 (1989) 1631–1638.
- F.S. Asghari, H. Yoshida, Acid-catalyzed production of
5-hydroxymethyl furfural from D-fructose in subcritical water,
Ind. Eng. Chem. Res., 45 (2006) 2163–2173.
- S.H. Wang, P.R. Griffiths, Resolution enhancement of diffuse
reflectance Ir spectra of coals by Fourier self-deconvolution: 1.
C-H stretching and bending modes, Fuel, 64 (1985) 229–236.
- H. Li, Y. Yang, S. Yang, A. Chen, D. Yang, Infrared spectroscopic
study on the modified mechanism of aluminum-impregnated
bone charcoal, J. Spectrosc., 2014 (2014) 1–7.
- B.H. Hameed, D.K. Mahmoud, A.L. Ahmad, Sorption
equilibrium and kinetics of basic dye from aqueous solution
using banana stalk waste, J. Hazard. Mater., 158 (2008) 499–506.
- S. Fan, Y. Wang, Z. Wang, J. Tang, J. Tang, X. Li, Removal of
methylene blue from aqueous solution by sewage sludge-derived
biochar: adsorption kinetics, equilibrium, thermodynamics and
mechanism, J. Environ. Chem. Eng., 5 (2017) 601–611.
- H. Yang, L. Weijun, W. Weiqing, F. Qiming, L. Jing, Synthesis of a
carbon@ Rectorite nanocomposite adsorbent by a hydrothermal
carbonization process and their application in the removal of
methylene blue and neutral red from aqueous solutions, Desal.
Wat. Treat., 57 (2016) 13573–13585.
- Y. Chen, J. Wang, Removal of radionuclide Sr2+ ions from
aqueous solution using synthesized magnetic chitosan beads,
Nucl. Eng. Des., 242 (2012) 445–451.
- S. Yeşim, A. Yücel, Mass transfer and equilibrium studies for
the sorption of chromium ions onto chitin, Process Biochem., 36
(2000) 157–173.
- A. Saeed, M. Sharif, M. Iqbal, Application potential of grapefruit
peel as dye sorbent: kinetics, equilibrium and mechanism of
crystal violet adsorption, J. Hazard. Mater., 179 (2010) 564–572.
- M. Monier, D.M. Ayad, A.A. Sarhan, Adsorption of Cu(II),
Hg(II), and Ni(II) ions by modified natural wool chelating
fibers, J. Hazard. Mater., 176 (2010) 348–355.
- S. Largegren, About the theory of so-called adsorption of
soluble substances, K. Sven. Vetenska.akad. Handl., 24 (1989)
1–39.
- Y.S. Ho, G. McKay, Pseudo-second order model for sorption
processes, Process Biochem., 34 (1999) 451–465.
- H.M.F. Freundlich, On the adsorption in solution, J. Phys.
Chem., 57 (1906) 385–471.
- I. Langmuir, The constitution and fundamental properties of
solids and liquids. Part I. Solids, J. Am. Chem. Soc., 38 (1916)
2221–2295.
- M.S. El-Geundi, Homogeneous surface diffusion model for
the adsorption of basic dyestuffs onto natural clay in batch
adsorbers, Adsorpt. Sci. Technol., 8 (1991) 217–225.
- H. Faghihian, M. Moayed, A. Firooz, M. Iravani, Synthesis
of a novel magnetic zeolite nanocomposite for removal of
Cs+ and Sr2+ from aqueous solution: kinetic, equilibrium, and
thermodynamic studies, J. Colloid Interface Sci., 393 (2013)
445–451.