References

  1. J.O. Nriagu, J.M. Pacyna, Quantitative assessment of worldwide contamination of air, water and soils by trace-metals, Nature, 333 (1988) 134–139.
  2. G.R. MacFarlane, M.D. Burchett, Toxicity, growth and accumulation relationships of copper, lead and zinc in the grey mangrove Avicennia marina (Forsk.) Vierh, Mar. Environ. Res., 54 (2002) 65–84.
  3. J.F. Liu, Z.S. Zhao, G.B. Jiang, Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water, Environ. Sci. Technol., 42 (2008) 6949–6954.
  4. G.P. Broom, R.C. Squires, M.P.J. Simpson, I. Martin, The treatment of heavy-metal effluents by cross-flow microfiltration, J. Membr. Sci., 87 (1994) 219–230.
  5. A. Bedemo, B.S. Chandravanshi, F. Zewge, Removal of trivalent chromium from aqueous solution using aluminum oxide hydroxide, Springerplus, 5 (2016) 1288.
  6. A. Levina, P.A. Lay, Chemical properties and toxicity of chromium(III) nutritional supplements, Chem. Res. Toxicol., 21 (2008) 563–571.
  7. R. Rajaram, B.U. Nair, T. Ramasami, Chromium(III) induced abnormalities in human lymphocyte cell-proliferation: evidence for apoptosis, Biochem. Biophys. Res. Commun., 210 (1995) 434–440.
  8. K.G. Karthikeyan, H.A. Elliott, F.S. Cannon, Adsorption and coprecipitation of copper with the hydrous oxides of iron and aluminum, Environ. Sci. Technol., 31 (1997) 2721–2725.
  9. J.B. Brower, R.L. Ryan, M. Pazirandeh, Comparison of ionexchange resins and biosorbents for the removal of heavy metals from plating factory wastewater, Environ. Sci. Technol., 31 (1997) 2910–2914.
  10. C. Blocher, J. Dorda, V. Mavrov, H. Chmiel, N.K. Lazaridis, K.A. Matis, Hybrid flotation—membrane filtration process for the removal of heavy metal ions from wastewater, Water Res., 37 (2003) 4018–4026.
  11. C.A. Basha, N.S. Bhadrinarayana, N. Anantharaman, K.M.M.S. Begum, Heavy metal removal from copper smelting effluent using electrochemical cylindrical flow reactor, J. Hazard. Mater., 152 (2008) 71–78.
  12. H. Abu Qdais, H. Moussa, Removal of heavy metals from wastewater by membrane processes: a comparative study, Desalination, 164 (2004) 105–110.
  13. M. Monier, D.M. Ayad, A.A. Sarhan, Adsorption of Cu(II), Hg(II), and Ni(II) ions by modified natural wool chelating fibers, J. Hazard. Mater., 176 (2010) 348–355.
  14. J. Goel, K. Kadirvelu, C. Rajagopal, V.K. Garg, Removal of lead(II) by adsorption using treated granular activated carbon: batch and column studies, J. Hazard. Mater., 125 (2005) 211–220.
  15. P. Shekinah, K. Kadirvelu, P. Kanmani, P. Senthilkumar, V. Subburam, Adsorption of lead(II) from aqueous solution by activated carbon prepared from Eichhornia, J. Chem. Technol. Biotechnol., 77 (2002) 458–464.
  16. X.X. Wang, D.D. Shao, G.S. Hou, X.K. Wang, A. Alsaedi, B. Ahmad, Uptake of Pb(II) and U(VI) ions from aqueous solutions by the ZSM-5 zeolite, J. Mol. Liq., 207 (2015) 338–342.
  17. C. Saka, O. Sahin, M.M. Kucuk, Applications on agricultural and forest waste adsorbents for the removal of lead(II) from contaminated waters, Int. J. Environ. Sci. Technol., 9 (2012) 379–394.
  18. Z. Reddad, C. Gerente, Y. Andres, P. Le Cloirec, Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies, Environ. Sci. Technol., 36 (2002) 2067–2073.
  19. D.A. Glatstein, F.M. Francisca, Influence of pH and ionic strength on Cd, Cu and Pb removal from water by adsorption in Na-bentonite, Appl. Clay Sci., 118 (2015) 61–67.
  20. D. Maity, D.C. Agrawal, Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media, J. Magn. Magn. Mater., 308 (2007) 46–55.
  21. Y.C. Chang, D.H. Chen, Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions, J. Colloid Interface Sci., 283 (2005) 446–451.
  22. S.T. Yang, P.F. Zong, X.M. Ren, Q. Wang, X.K. Wang, Rapid and highly efficient preconcentration of Eu(III) by core-shell structured Fe3O4@humic acid magnetic nanoparticles, ACS Appl. Mater. Interfaces, 4 (2012) 6890–6899.
  23. M. Bhaumik, A. Maity, V.V. Srinivasu, M.S. Onyango, Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/ Fe3O4 magnetic nanocomposite, J. Hazard. Mater., 190 (2011) 381–390.
  24. D.C. Culita, C.M. Simonescu, R.E. Patescu, M. Dragne, N. Stanica, O. Oprea, o-Vanillin functionalized mesoporous silica – coated magnetite nanoparticles for efficient removal of Pb(II) from water, J. Solid State Chem., 238 (2016) 311–320.
  25. W. Wu, Q.G. He, C.Z. Jiang, Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies, Nanoscale Res. Lett., 3 (2008) 397–415.
  26. J. Morales, J.A. Manso, A. Cid, J.C. Mejuto, Degradation of carbofuran and carbofuran-derivatives in presence of humic substances under basic conditions, Chemosphere, 89 (2012) 1267–1271.
  27. E.B.O. Gungor, M. Bekbolet, Zinc release by humic and fulvic acid as influenced by pH, complexation and DOC sorption, Geoderma, 159 (2010) 131–138.
  28. W.W. Tang, G.M. Zeng, J.L. Gong, J. Liang, P. Xu, C. Zhang, B.B. Huang, Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review, Sci. Total Environ., 468 (2014) 1014–1027.
  29. Q. Du, Z.X. Sun, W. Forsling, H.X. Tang, Complexations in illitefulvic acid-Cu2+ systems, Water Res., 33 (1999) 693–706.
  30. W.J. Jiang, Q. Cai, W. Xu, M.W. Yang, Y. Cai, D.D. Dionysiou, K.E. O’Shea, Cr(VI) adsorption and reduction by humic acid coated on magnetite, Environ. Sci. Technol., 48 (2014) 8078–8085.
  31. P. Luo, J.S. Zhang, B. Zhang, J.H. Wang, Y.F. Zhao, J.D. Liu, Preparation and characterization of silane coupling agent modified halloysite for Cr(VI) removal, Ind. Eng. Chem. Res., 50 (2011) 10246–10252.
  32. B.H. Gu, J. Schmitt, Z.H. Chen, L.Y. Liang, J.F. Mccarthy, Adsorption and desorption of natural organic-matter on ironoxide – mechanisms and models, Environ. Sci. Technol., 28 (1994) 38–46.
  33. M.R. Lasheen, I.Y. El-Sherif, D.Y. Sabry, S.T. El-Wakeel, M.F. El-Shahat, Removal and recovery of Cr(VI) by magnetite nanoparticles, Desal. Wat. Treat., 52 (2014) 6464–6473.
  34. S.H. Sun, H. Zeng, Size-controlled synthesis of magnetite nanoparticles, J. Am. Chem. Soc., 124 (2002) 8204–8205.
  35. Y.T. He, S.J. Traina, Cr(VI) reduction and immobilization by magnetite under alkaline pH conditions: the role of passivation, Environ. Sci. Technol., 39 (2005) 4499–4504.
  36. S.R. Chowdhury, E.K. Yanful, Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal, J. Environ. Manage., 91 (2010) 2238–2247.
  37. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (Recommendations 1984), Pure Appl. Chem., 57 (1985) 603–619.
  38. R.A. Alvarez-Puebla, P.J.G. Goulet, J.J. Garrido, Characterization of the porous structure of different humic fractions, Colloids Surf., A, 256 (2005) 129–135.
  39. D. Rai, B.M. Sass, D.A. Moore, Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide, Inorg. Chem., 26 (1987) 345–349.
  40. D. Rai, D.A. Moore, N.J. Hess, L. Rao, S.B. Clark, Chromium(III) hydroxide solubility in the aqueous Na+-OH-H2PO4-HPO42–-PO43–-H2O system: a thermodynamic model, J. Solution Chem., 33 (2004) 1213–1242.
  41. M.Q. Yan, Q.W. Fu, D.C. Li, G.F. Gao, D.S. Wang, Study of the pH influence on the optical properties of dissolved organic matter using fluorescence excitation-emission matrix and parallel factor analysis, J. Lumin., 142 (2013) 103–109.
  42. J. Yu, F. Liu, M.Z. Yousaf, Y.L. Hou, Magnetic nanoparticles: chemical synthesis, functionalization and biomedical applications, Prog. Biochem. Biophys., 40 (2013) 903–917.
  43. L.J. Kennedy, J.J. Vijaya, G. Sekaran, K. Kayalvizhi, Equilibrium, kinetic and thermodynamic studies on the adsorption of m-cresol onto micro- and mesoporous carbon, J. Hazard. Mater., 149 (2007) 134–143.
  44. J. Febrianto, A.N. Kosasih, J. Sunarso, Y.H. Ju, N. Indraswati, S. Ismadji, Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies, J. Hazard. Mater., 162 (2009) 616–645.
  45. X.S. Wang, L. Zhu, H.J. Lu, Surface chemical properties and adsorption of Cu (II) on nanoscale magnetite in aqueous solutions, Desalination, 276 (2011) 154–160.
  46. H.K. Boparai, M. Joseph, D.M. O’Carroll, Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles, J. Hazard. Mater., 186 (2011) 458–465.
  47. Y. Liu, Some consideration on the Langmuir isotherm equation, Colloids Surf., A, 274 (2006) 34–36.
  48. C.H. Yang, Statistical mechanical study on the Freundlich isotherm equation, J. Colloid Interface Sci., 208 (1998) 379–387.
  49. M.A. Atieh, O.Y. Bakather, B.S. Tawabini, A.A. Bukhari, M. Khaled, M. Alharthi, M. Fettouhi, F.A. Abuilaiwi, Removal of chromium (III) from water by using modified and nonmodified carbon nanotubes, J. Nanomater., 2010 (2010) 1–9.
  50. J. Hu, C.L. Chen, X.X. Zhu, X.K. Wang, Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes, J. Hazard. Mater., 162 (2009) 1542–1550.
  51. H.D. Li, Z. Li, T. Liu, X. Xiao, Z.H. Peng, L. Deng, A novel technology for biosorption and recovery hexavalent chromium in wastewater by bio-functional magnetic beads, Bioresour. Technol., 99 (2008) 6271–6279.
  52. R. Ansari, N.K. Fahim, Application of polypyrrole coated on wood sawdust for removal of Cr(VI) ion from aqueous solutions, React. Funct. Polym., 67 (2007) 367–374.
  53. Y. Liu, Is the free energy change of adsorption correctly calculated?, J. Chem. Eng. Data, 54 (2009) 1981–1985.
  54. A. Ayati, B. Tanhaei, M. Sillanpaa, Lead(II)-ion removal by ethylenediaminetetraacetic acid ligand functionalized magnetic chitosan-aluminum oxide-iron oxide nanoadsorbents and microadsorbents: equilibrium, kinetics, and thermodynamics, J. Appl. Polym. Sci., 134 (2017) 44360.
  55. T. Singh, R. Singhal, Regenerable hydrogels based on poly(acrylic acid-sodium acrylate-acrylamide) modified by sodium humate for high removal of Pb2+ and Fe2+ ions: metal adsorption kinetics and thermodynamic studies, Desal. Wat. Treat., 52 (2014) 5611–5628.
  56. X.Y. Guan, J.M. Chang, Y. Chen, H.J. Fan, A magneticallyseparable Fe3O4 nanoparticle surface grafted with polyacrylic acid for chromium(III) removal from tannery effluents, RSC Adv., 5 (2015) 50126–50136.