References

  1. J.C. Agunwamba, Reduction of sampling time in tracer studies, Water Environ. Res., 69 (1997) 343–349.
  2. J.C. Agunwamba, O.C. Ojukwu, I.P. Omeje, Comparison of Euler-Lagrangian and Fisher’s methods of predicting dispersion coefficient, Niger. J. Technol., 32 (2013) 30–36.
  3. I.M. Aho, G.D. Akpan, S.J. Uungwa, Calibration of dispersion models using Mu River, Benue State, Nigeria, Int. J. Sci. Eng. Res., 7 (2016) 1885–1892.
  4. X. Li, H. Liu, M. Yin, Differential evolution for prediction of longitudinal dispersion coefficients in natural streams, Water Resour. Manage., 27 (2013) 5245–5260. doi: 10.1007/ s11269-013-0465-2.
  5. Y.H. Zeng, W.X. Huai, Estimation of longitudinal dispersion coefficient in rivers, J. Hydro-environ. Res., 8 (2014) 2–8.
  6. T. Disley, B. Gharabaghi, A. Mahboubi, E. McBean, Predictive equation for longitudinal dispersion coefficient, Hydrol. Processes, 29 (2015) 161–172.
  7. Y. Velísková, M. Sokáč, P. Halaj, M.K. Bara, R. Dulovičová, R. Schügerl, Pollutant spreading in a small stream: a case study in Mala Nitra Canal in Slovakia, Environ. Processes, 1 (2014) 265–276.
  8. J.A. Mohamad, S. Hosein, R.K. Mohammad, S. Hamid, B. Reza, Prediction of longitudinal dispersion coefficient in natural rivers using a cluster-based Bayesian network, Environ. Earth Sci., 76 (2017) 86.
  9. R.R. Sahay, Predicting longitudinal dispersion coefficients in sinuous rivers by genetic algorithm, J. Hydrol. Hydromech., 61 (2013) 214–221.
  10. I.T. Tenebe, C.P. Emenike, D.O. Omole, N.M. Ogarekpe ,M. Omeje, A.O. Aikuola, U.A. Omeje, Predicting Degradation with Biochemical Oxygen Demand in Disinfectant-Polluted Sewage, Water and Society IV, WIT Transactions on Ecology and the Environment, Seville, Spain, 2017, pp. 313–320.
  11. I.T. Tenebe, A.S. Ogbiye, D.O. Omole, P.C. Emenike, Estimation of longitudinal dispersion co-efficient: a review, Cogent Eng., 3 (2016) 216–244. doi:10.1080/23311916.2016.1216244.
  12. O. Levenspiel, W. Smith, Notes on the diffusion-type model for the longitudinal mixing of fluids in flow, Chem. Eng. Sci., 6 (1957) 227–235.
  13. A. Etemadi-Shahidi, M. Taghipour, Predicting longitudinal dispersion coefficient in natural stream using M5 model tree, J. Hydraul. Eng. ASCE, 138 (2012) 542–554.
  14. N. Ogarekpe, J. Agunwamba, I. Nwaogazie, Sensitivity analysis of model parameters on biochemical oxygen demand in integrated solar and hydraulic jump enhanced waste stabilization pond, Desal. Wat. Treat., 57 (2016) 21130–21142.
  15. N.R. Draper, H. Smith, Applied Regression Analysis, 3rd ed., A Wiley–Interscience, John Wiley & Sons, Inc., Hoboken, New Jersey, 1998.
  16. S. Chatterjee, A.S. Hadi, Regression Analysis by Example, 4th ed., A Wiley-Interscience, John Wiley & Sons, Inc., Hoboken, New Jersey, 2006.
  17. C.S. Ding, Using regression mixture analysis in educational research, Pract. Assess. Res. Eval., 11 (2006) 1–11.
  18. S.C. Chapra, R.P. Canale, Numerical Methods for Engineers, 6th ed., The McGraw–Hill Companies, New York, 2010.
  19. J.T. Utsev, N.M. Ogarekpe, T. Tivde, Empirical regression model for biochemical oxygen demand removal in solar enhanced waste stabilization ponds, Energy Sci. Technol., 5 (2013) 31–35.
  20. J.C. Agunwamba, S.C., Anyanwu, C.O. Owhondah, A.M. Raji, The effect of roughness on dispersion, Int. J. Sci. Technol. Res., 5 (2008) 202–210.
  21. I.T. Tenebe, P.C. Emenike, A.S. Ogbiye, D.O. Omole, B.U. Ngene, O. Maxwell, O.O. Olatunji, A laboratory assessment of the effect of varying roughness on dissolved oxygen using error correction method, Cogent Eng., 5 (2018), 1427191. doi: https:// doi.org/10.1080/23311916.2018.1427191.
  22. M. Owens, R.W. Edwards, J.W. Gibbs, Some reaeration studies in streams, Int. J. Air Water Pollut., 8 (1964) 469–486.
  23. W.B. Langbein, W.H. Dururn, The Aeration Capacity of Streams, U.S. Geological Survey, Circular S42, Reston, 1967.
  24. J.V. Baecheler, O.L. Lazo, Evaluation of Water Quality Modelling Parameters: Reaeration Coefficient, IAHR, Madrid, 1999.
  25. R. Jha, C.S.P. Ojha, K.K.S. Bhatia, Refinement of predictive reaeration equations for a typical Indian river, Hydrol. Processes, 15 (2001) 1047–1060.
  26. J.C. Agunwamba, C.N. Maduka, A.M. Ofosaren, Analysis of pollution status of Amadi Creek and its management, J. Water Supply Res. Technol. AQUA, 55 (2007) 427–435.
  27. D.O. Omole, E.O. Longe, A.G. Musa, An approach to reaeration coefficient modelling in local surface water quality monitoring, Environ. Model. Assess., 18 (2013) 85–94.
  28. G.D. Hutcheson, Ordinary Least-Square Regression, The Sage Dictionary of Quantitative Management Research, 2011, pp. 224–228.
  29. D.N. Moriasi, J.G. Arnold, M.W. Van Liew, R.L. Bingner, R.D. Harmel, T.L. Veith, Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, Am. Soc. Agric. Biol. Eng., 50 (2007) 885–900.
  30. A.C. Harvey, The Econometric Analysis of Time Series, 2nd ed., Cambridge, MA, MIT Press, 1990.
  31. D.C. Montgomery, E.A. Peck, G.G. Vining, Introduction to Linear Regression Analysis, 3rd ed., John Wiley & Sons, Inc., New York, NY, 2001.
  32. A.P. Field, Discovering Statistics Using SPSS: (and Sex, Drugs and Rock ‘n’ Roll), 3rd ed., Sage, London, 2009.
  33. I.W. Seo, T.S. Cheong, Predicting longitudinal dispersion coefficient in natural streams, J. Hydraul. Eng., 124 (1998) 25–32.
  34. Z. Deng, V.P. Singh, L. Bengtsson, Longitudinal dispersion coefficient in straight rivers, J. Hydraul. Eng., 127 (2001) 919–927.
  35. S.M. Kashefipour, R.A. Falconer, Longitudinal dispersion coefficients in natural channels, Water Res., 36 (2002) 1596–1608.
  36. I.W. Seo, K.O. Baek, Estimation of the longitudinal dispersion coefficient using the velocity profile in natural streams, J. Hydraul. Eng., 130 (2004) 227–236.
  37. H. Sedighnezhad, H. Salehi, D. Mohein, Comparison of Different Transport and Dispersion of Sediments in Mard Intake by FASTER Model, Proc. The Seventh International Symposium River Engineering, 16–18 October, Ahwaz, Iran, 2007, pp. 45–54.
  38. H.B. Fisher, E.J. List, R.C.Y, Koh, J. Imberger, N.H. Brooks, Mixing in Inland and Coastal Waters, Academic press, New York, 1979, pp. 104–138.
  39. A. Tavakollizadeh, S.M. Kashefipur, Effects of Dispersion Coefficient on Quality Modelling of Surface Waters, Proc. The Sixth International Symposium River Engineering, 16–18 October, Ahwaz, Iran, 2007, pp. 67–78.
  40. G.E.P. Box, G.M. Jenkins, G.C. Reinsel, Time Series Analysis: Forecasting and Control, 3rd ed., Prentice Hall, Englewood Cliffs, NJ, 1994.