References

  1. S. Banerjee, G.C. Sharma, R.K. Gautam, M.C. Chattopadhyaya, S.N. Upadhyay, Y.C. Sharma, Removal of Malachite Green, a hazardous dye from aqueous solutions using Avena sativa (oat) hull as a potential adsorbent, J. Mol. Liq., 213 (2016) 162–172.
  2. M.R.R. Kooh, M.K. Dahri, L.B.L. Lim, L.H. Lim, O.A. Malik, Batch adsorption studies of the removal of methyl violet 2B by soya bean waste: isotherm, kinetics and artificial neural network modelling, Environ. Earth Sci., 75 (2016) 1–14.
  3. H. Shayesteh, A. Rahbar-Kelishami, R. Norouzbeigi, Adsorption of malachite green and crystal violet cationic dyes from aqueous solution using pumice stone as a low-cost adsorbent: kinetic, equilibrium, and thermodynamic studies, Desal. Wat. Treat., 57 (2016) 12822–12831.
  4. Y.H. Song, S.G. Ding, S.M. Chen, H. Xu, Y. Mei, J.M. Ren, Removal of malachite green in aqueous solution by adsorption on sawdust, Korean J. Chem. Eng., 32 (2015) 2443–2448.
  5. M.A. Ahmad, R. Alrozi, Optimization of preparation conditions for mangosteen peel-based activated carbons for the removal of Remazol Brilliant Blue R using response surface methodology, Chem. Eng. J., 165 (2010) 883–890.
  6. A. Reffas, A. Bouguettoucha, D. Chebli, A. Amrane, Adsorption of ethyl violet dye in aqueous solution by forest wastes, wild carob, Desal. Wat. Treat., 57 (2016) 9859–9870.
  7. G. Karaçetin, S. Sivrikaya, M. Imamoğlu, Adsorption of methylene blue from aqueous solutions by activated carbon prepared from hazelnut husk using zinc chloride, J. Anal. Appl. Pyrolysis, 110 (2014) 270–276.
  8. K. Saeed, M. Ishaq, S. Sultan, I. Ahmad, Removal of methyl violet 2-B from aqueous solutions using untreated and magnetite-impregnated almond shell as adsorbents, Desal. Wat. Treat., 57 (2016) 13484–13493.
  9. F. Gündüz, B. Bayrak, Biosorption of malachite green from an aqueous solution using pomegranate peel: equilibrium modelling, kinetic and thermodynamic studies, J. Mol. Liq., 243 (2017) 790–798.
  10. M.K. Uddin, A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade, Chem. Eng. J., 308 (2017) 438–462.
  11. Z. Ma, Q. Zhang, X. Weng, C. Mang, L. Si, Z. Guan, L. Cheng, Fluoride ion adsorption from wastewater using magnesium(II), aluminum(III) and titanium(IV) modified natural zeolite: kinetics, thermodynamics, and mechanistic aspects of adsorption, J Water Reuse Desal., 8 (2017). doi: 10.2166/ wrd.2017.037.
  12. O. Lacin, B. Bayrak, O. Korkut, E. Sayan, Modeling of adsorption and ultrasonic desorption of cadmium(II) and zinc(II) on local bentonite, J. Colloid Interface Sci., 292 (2005) 330–335.
  13. O. Korkut, E. Sayan, O. Lacin, B. Bayrak, Investigation of adsorption and ultrasound assisted desorption of lead (II) and copper (II) on local bentonite: a modelling study, Desalination, 259 (2010) 243–248.
  14. N.K. Amin, Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: adsorption equilibrium and kinetics, J. Hazard. Mater., 165 (2009) 52–62.
  15. A. Bhatnagar, A.K. Minocha, Adsorptive removal of 2,4-dichlorophenol from water utilizing Punica granatum peel waste and stabilization with cement, J. Hazard. Mater., 168 (2009) 1111–1117.
  16. Ç.Ö. Ay, A.S. Özcan, Y. Erdoğan, A. Özcan, Characterization of Punica granatum L. peels and quantitatively determination of its biosorption behavior towards lead (II) ions and Acid Blue 40, Colloids Surf., B, 100 (2012) 197–204.
  17. T. Senthilkumar, R. Raghuraman, L.R. Miranda, Parameter optimization of activated carbon production from Agave sisalana and Punica granatum peel: adsorbents for CI reactive orange 4 removal from aqueous solution, Clean Soil Air Water, 41 (2013) 797–807.
  18. T.S. Najim, S.A. Yassin, Removal of chromium from aqueous solution using modified pomegranate peel: mechanistic and thermodynamic studies, J. Chem., 6 (2009) S153–S158.
  19. G. Sharma, D. Kumar, A. Kumar, H. Ala’a, D. Pathania, M. Naushad, G.T. Mola, Revolution from monometallic to trimetallic nanoparticle composites, various synthesis methods and their applications: a review, Mater. Sci. Eng., C, 71 (2017) 1216–1230.
  20. R. Katwal, H. Kaur, G. Sharma, M. Naushad, D. Pathania, Electrochemical synthesized copper oxide nanoparticles for enhanced photocatalytic and antimicrobial activity, J. Ind. Eng. Chem., 31 (2015) 173–184.
  21. M. Khosravi, S. Arabi, Application of response surface methodology (RSM) for the removal of methylene blue dye from water by nano zero-valent iron (NZVI), Water Sci. Technol., 74 (2016) 343–352.
  22. P. Dorjee, D. Amarasiriwardena, B. Xing, Antimony adsorption by zero-valent iron nanoparticles (nZVI): ion chromatography– inductively coupled plasma mass spectrometry (IC–ICP-MS) study, Microchem. J., 116 (2014) 15–23.
  23. A.M. Azzam, S.T. El-Wakeel, B.B. Mostafa, M. El-Shahat, Removal of Pb, Cd, Cu and Ni from aqueous solution using nano scale zero valent iron particles, J. Environ. Chem. Eng., 4 (2016) 2196–2206.
  24. N. Ezzatahmadi, G.A. Ayoko, G.J. Millar, R. Speight, C. Yan, J. Li, S. Li, J. Zhu, Y. Xi, Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: a review, Chem. Eng. J., 312 (2016) 336–350.
  25. Y. Xie, Y. Yi, Y. Qin, L. Wang, G. Liu, Y. Wu, Z. Diao, T. Zhou, M. Xu, Perchlorate degradation in aqueous solution using chitosan-stabilized zero-valent iron nanoparticles, Sep. Purif. Technol., 171 (2016) 164–173.
  26. N. Arancibia-Miranda, S.E. Baltazar, A. García, D. Munoz-Lira, P. Sepúlveda, M.A. Rubio, D. Altbir, Nanoscale zero valent supported by zeolite and montmorillonite: template effect of the removal of lead ion from an aqueous solution, J. Hazard. Mater., 301 (2016) 371–380.
  27. A. Afizah, A. Salina, D. Farrah Aini, S. Ragunathan, T.T. Tjoon, Kinetic removal of Cr⁶⁺ in aqueous solution by carboxymethyl cellulose-stabilized nano zero-valent iron particles, Maced. J. Chem. Chem. Eng., 34 (2015) 295–308.
  28. V. Alipour, S. Nasseri, R.N. Nodehi, A.H. Mahvi, A. Rashidi, Preparation and application of oyster shell supported zero valent nano scale iron for removal of natural organic matter from aqueous solutions, J. Environ. Health Sci. Eng., 12 (2014) 146.
  29. D. Prabu, R. Parthiban, P. Senthil Kumar, N. Kumari, P. Saikia, Adsorption of copper ions onto nano-scale zero-valent iron impregnated cashew nut shell, Desal. Wat. Treat., 57 (2016) 6487–6502.
  30. H. Zhu, Y. Jia, X. Wu, H. Wang, Removal of arsenic from water by supported nano zero-valent iron on activated carbon, J. Hazard. Mater., 172 (2009) 1591–1596.
  31. A. Kumar, C. Guo, G. Sharma, D. Pathania, M. Naushad, S. Kalia, P. Dhiman, Magnetically recoverable ZrO2/Fe3O4/chitosan nanomaterials for enhanced sunlight driven photoreduction of carcinogenic Cr(VI) and dechlorination and mineralization of 4-chlorophenol from simulated waste water, RSC Adv., 6 (2016) 13251–13263.
  32. A.A. Alqadami, M. Naushad, M.A. Abdalla, M.R. Khan, Z.A. Alothman, Adsorptive removal of toxic dye using Fe3O4–TSC nanocomposite: equilibrium, kinetic, and thermodynamic studies, J. Chem. Eng. Data, 61 (2016) 3806–3813.
  33. G. Sharma, A. Kumar, M. Naushad, D. Pathania, M. Sillanpää, Polyacrylamide@Zr(IV) vanadophosphate nanocomposite: ion exchange properties, antibacterial activity, and photocatalytic behavior, J. Ind. Eng. Chem., 33 (2016) 201–208.
  34. G. Sharma, D. Pathania, M. Naushad, N. Kothiyal, Fabrication, characterization and antimicrobial activity of polyaniline Th(IV) tungstomolybdophosphate nanocomposite material: efficient removal of toxic metal ions from water, Chem. Eng. J., 251 (2014) 413–421.
  35. F. Yang, Y. He, S. Sun, Y. Chang, F. Zha, Z. Lei, Walnut shell supported nanoscale Fe0 for the removal of Cu(II) and Ni(II) ions from water, J. Appl. Polym. Sci., 133 (2016) 43304–43309.
  36. S. Ben-Ali, I. Jaouali, S. Souissi-Najar, A. Ouederni, Characterization and adsorption capacity of raw pomegranate peel biosorbent for copper removal, J. Cleaner Prod., 142 (2017) 3809–3821.
  37. H. Singh, G. Chauhan, A.K. Jain, S. Sharma, Adsorptive potential of agricultural wastes for removal of dyes from aqueous solutions, J. Environ. Chem. Eng., 5 (2017) 122–135.
  38. M.B. Silveira, F.A. Pavan, N.F. Gelos, E.C. Lima, S.L. Dias, Punica granatum shell preparation, characterization, and use for crystal violet removal from aqueous solution, Clean Soil Air Water, 42 (2014) 939–946.
  39. B. Suart, Infrared Spectroscopy: Fundamental and Applications, John Wiley & Sons, Ltd., Canada, 2004.
  40. T. Tatarchuk, M. Bououdina, N. Paliychuk, I. Yaremiy, V. Moklyak, Structural characterization and antistructure modeling of cobalt-substituted zinc ferrites, J. Alloys Compd., 694 (2017) 777–791.
  41. T. Tatarchuk, N. Paliychuk, M. Bououdina, B. Al-Najar, M. Pacia, W. Macyk, A. Shyichuk, Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles, J. Alloys Compd., 731 (2018) 1256–1266.
  42. D. Angın, E. Altintig, T.E. Köse, Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation, Bioresour. Technol., 148 (2013) 542–549.
  43. K. Foo, B. Hameed, Textural porosity, surface chemistry and adsorptive properties of durian shell derived activated carbon prepared by microwave assisted NaOH activation, Chem. Eng. J., 187 (2012) 53–62.
  44. M.A. Ahmad, R. Alrozi, Removal of malachite green dye from aqueous solution using rambutan peel-based activated carbon: equilibrium, kinetic and thermodynamic studies, Chem. Eng. J., 171 (2011) 510–516.
  45. E.-K. Guechi, O. Hamdaoui, Biosorption of methylene blue from aqueous solution by potato (Solanum tuberosum) peel: equilibrium modelling, kinetic, and thermodynamic studies, Desal. Wat. Treat., 57 (2016) 10270–10285.
  46. D. Pathania, R. Katwal, G. Sharma, M. Naushad, M.R. Khan, H. Ala’a, Novel guar gum/Al2O3 nanocomposite as an effective photocatalyst for the degradation of malachite green dye, Int. J. Biol. Macromol., 87 (2016) 366–374.
  47. G. Sharma, M. Naushad, D. Pathania, A. Kumar, A multifunctional nanocomposite pectin thorium (IV) tungstomolybdate for heavy metal separation and photoremediation of malachite green, Desal. Wat. Treat., 57 (2016) 19443–19455.
  48. R.A. Rao, F. Rehman, Adsorption of heavy metal ions on pomegranate (Punica granatum) peel: removal and recovery of Cr(VI) ions from a multi-metal ion system, Adsorpt. Sci. Technol., 28 (2010) 195–211.
  49. M.K. Dahri, M.R.R. Kooh, L.B.L. Lim, Water remediation using low cost adsorbent walnut shell for removal of malachite green: equilibrium, kinetics, thermodynamic and regeneration studies, J. Environ. Chem. Eng., 2 (2014) 1434–1444.
  50. S. Subramani, N. Thinakaran, Isotherm, kinetic and thermodynamic studies on the adsorption behaviour of textile dyes onto chitosan, Process Saf. Environ. Prot., 106 (2017) 1–10.
  51. L.-G. Wang, G.-B. Yan, Adsorptive removal of direct yellow 161 dye from aqueous solution using bamboo charcoals activated with different chemicals, Desalination, 274 (2011) 81–90.
  52. M. Ghasemi, S. Mashhadi, M. Asif, I. Tyagi, S. Agarwal, V.K. Gupta, Microwave-assisted synthesis of tetraethylenepentamine functionalized activated carbon with high adsorption capacity for Malachite green dye, J. Mol. Liq., 213 (2016) 317–325.
  53. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  54. H. Freundlich, Uber die adsorption in lasugen (Leipzig), Z. Phys. Chem. A, 57 (1906) 385–470.
  55. L. Zhang, H. Zhang, W. Guo, Y. Tian, Removal of malachite green and crystal violet cationic dyes from aqueous solution using activated sintering process red mud, Appl. Clay Sci., 93 (2014) 85–93.
  56. M. Temkin, V. Pyzhev, Recent Modifications to Langmuir Isotherms, Acta Physiochim, 12 (1940) 217–222.
  57. M. Dubinin, L. Radushkevich, Equation of the characteristic curve of activated charcoal, Chem. Zentr, 1 (1947) 875–890.
  58. O. Redlich, D.L. Peterson, A useful adsorption isotherm, J. Phys. Chem., 63 (1959) 1024.
  59. M.A. Ahmad, N. Ahmad, O.S. Bello, Modified durian seed as adsorbent for the removal of methyl red dye from aqueous solutions, Appl. Water Sci., 5 (2015) 407–423.
  60. M. Baghdadi, B.A. Soltani, M. Nourani, Malachite green removal from aqueous solutions using fibrous cellulose sulfate prepared from medical cotton waste: comprehensive batch and column studies, J. Ind. Eng. Chem., 55 (2017) 128–139.
  61. Y.-S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  62. S. Lagergren, Zur theorie der sogenannten adsorption geloster stoffe, K. Sven. Vetensk.akad. Handl., 24 (1898) 1–39.
  63. M. Low, Kinetics of chemisorption of gases on solids, Chem. Rev., 60 (1960) 267–312.
  64. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div., 89 (1963) 31–60.
  65. T. Şahan, D. Öztürk, Investigation of Pb(II) adsorption onto pumice samples: application of optimization method based on fractional factorial design and response surface methodology, Clean Technol. Environ. Policy, 16 (2014) 819–831.
  66. M.R. Patil, V. Shrivastava, Adsorption of malachite green by polyaniline–nickel ferrite magnetic nanocomposite: an isotherm and kinetic study, Appl. Nanosci., 5 (2015) 809–816.
  67. H.I. Chieng, T. Zehra, L.B.L. Lim, N. Priyantha, D. Tennakoon, Sorption characteristics of peat of Brunei Darussalam IV: equilibrium, thermodynamics and kinetics of adsorption of methylene blue and malachite green dyes from aqueous solution, Environ. Earth Sci., 72 (2014) 2263–2277.
  68. L.B.L. Lim, N. Priyantha, N.H. Mohd Mansor, Utilizing Artocarpus altilis (breadfruit) skin for the removal of malachite green: isotherm, kinetics, regeneration, and column studies, Desal. Wat. Treat., 57 (2016) 16601–16610.
  69. X. Zhang, H. Yu, H. Yang, Y. Wan, H. Hu, Z. Zhai, J. Qin, Graphene oxide caged in cellulose microbeads for removal of malachite green dye from aqueous solution, J. Colloid Interface Sci., 437 (2015) 277–282.
  70. M. Ghaedi, N. Mosallanejad, Study of competitive adsorption of malachite green and sunset yellow dyes on cadmium hydroxide nanowires loaded on activated carbon, J. Ind. Eng. Chem., 20 (2014) 1085–1096.
  71. J. Zhang, Y. Li, C. Zhang, Y. Jing, Adsorption of malachite green from aqueous solution onto carbon prepared from Arundo donax root, J. Hazard. Mater., 150 (2008) 774–782.
  72. B. Ramaraju, P. Manoj Kumar Reddy, C. Subrahmanyam, Low cost adsorbents from agricultural waste for removal of dyes, Environ. Prog. Sustain. Energy, 33 (2014) 38–46.
  73. V. Govindasamy, R. Sahadevan, S. Subramanian, D.K. Mahendradas, Removal of malachite green from aqueous solutions by perlite, Int. J. Chem. Reactor Eng., 7 (2009) 43–49.
  74. H. Lata, R.K. Gupta, V.K. Garg, Removal of basic dye from aqueous solution using chemically modified Parthenium hysterophorus Linn. biomass, Chem. Eng. Commun., 195 (2008) 1185–1199.