References
- L. Yu-Juan, Z. Xi-Hai, Removal of organic-dye (bromophenol
blue) by solvent solution, Chem. J. Chin. Univ., 21 (2000) 76–76.
- Y. Lu, Y. Wang, X. Zhu, The removal of bromophenol blue
from water by solvent solution, Sep. Sci. Technol., 36 (2001)
3763–3776.
- R. Azmat, Z. Khalid, M. Haroon, K.B. Mehar, Spectral analysis
of catalytic oxidation and degradation of bromophenol blue
at low pH with potassium dichromate, Adv. Nat. Sci., 6 (2013)
38–43.
- J. Yang, S. Cui, J.Q. Qiao, H.Z. Lian, The photocatalytic
dehalogenation of chlorophenols and bromophenols by cobalt
doped nano TiO2, J. Mol. Catal. A Chem., 395 (2014) 42–51.
- Y. Absalan, I. Bratchikova, O.V. Kovalchukova, Accurate
investigation to determine the best conditions for using NiTiO3
for bromophenol blue degradation in the environment under
UV-Vis light based on concentration reduction and to compare
it with TiO2, Environ. Nanotechnol. Monit. Manage., 8 (2017)
244–253.
- A. Nezamzadeh-Ejhieh, H. Zabihi-Mobarakeh, Heterogeneous
photodecolorization of mixture of methylene blue and
bromophenol blue using CuO-nano-clinoptilolite, J. Ind. Eng.
Chem., 20 (2014) 1421–1431.
- N.K. Temel, R. Gürkan, F. Ayan, Photocatalytic TiO2-catalyzed
degradation of bromophenol blue-mediated Mo(VI)-peroxo
complexes in the presence of SDS, Desal. Wat. Treat., 57 (2016)
21083–21090.
- M. Ghaedi, A.M. Ghaedi, E. Negintaji, A. Ansari, A. Vafaei, M.
Rajabi, Random forest model for removal of bromophenol blue
using activated carbon obtained from Astragalus bisulcatus tree,
J. Ind. Eng. Chem., 20 (2014) 1793–1803.
- S. Sohni, K. Gul, F. Ahmad, I. Ahmad, A. Khan, N. Khan, S.B.
Khan, Highly efficient removal of acid red-17 and bromophenol
blue dyes from industrial wastewater using graphene oxide
functionalized magnetic chitosan composite, Polym. Compos.
(2017). doi: 10.1002/pc.24349.
- L. Ai, L. Li, Efficient removal of organic dyes from aqueous
solution with ecofriendly biomass-derived carbon@
montmorillonite nanocomposites by one-step hydrothermal
process, Chem. Eng. J., 223 (2013) 688–695.
- S. Dhananasekaran, R. Palanivel, S. Pappu, Adsorption of
methylene blue, bromophenol blue, and coomassie brilliant
blue by α-chitin nanoparticles, J. Adv. Res., 7 (2016) 113–124.
- M.A. Malana, S. Ijaz, M.N. Ashiq, Removal of various dyes from
aqueous media onto polymeric gels by adsorption process: their
kinetics and thermodynamics, Desalination, 263 (2010) 249–257.
- L. You, Z. Wu, T. Kim, K. Lee, Kinetics and thermodynamics
of bromophenol blue adsorption by a mesoporous hybrid
gel derived from tetraethoxysilane and bis (trimethoxysilyl)
hexane, J. Colloid Interface Sci., 300 (2006) 526–535.
- J. Liu, S. Yao, L. Wang, W. Zhu, J. Xu, H. Song, Adsorption of
bromophenol blue from aqueous samples by novel supported
ionic liquids, J. Chem. Technol. Biotechnol., 89 (2014) 230–238.
- H. Mazaheri, M. Ghaedi, A. Asfaram, S. Hajati, Performance of
CuS nanoparticle loaded on activated carbon in the adsorption
of methylene blue and bromophenol blue dyes in binary
aqueous solutions: using ultrasound power and optimization
by central composite design, J. Mol. Liq., 219 (2016) 667–676.
- A. Mohammadzadeh, M. Ramezani, A.M. Ghaedi, Synthesis and
characterization of Fe2O3-ZnO-ZnFe2O4/carbon nanocomposite
and its application to removal of bromophenol blue dye using
ultrasonic assisted method: optimization by response surface
methodology and genetic algorithm, J. Taiwan Inst. Chem. Eng.,
59 (2016) 275–284.
- A.A. El-Zahhar, N.S. Awwad, E.E. El-Katori, Removal of
bromophenol blue dye from industrial waste water by
synthesizing polymer-clay composite, J. Mol. Liq., 199 (2014)
454–461.
- A. Fakhri, Investigation of mercury (II) adsorption from aqueous
solution onto copper oxide nanoparticles: optimization using
response surface methodology, Process Saf. Environ. Prot., 93
(2015) 1–8.
- A. Fakhri, Assessment of Ethidium bromide and Ethidium
monoazide bromide removal from aqueous matrices by
adsorption on cupric oxide nanoparticles, Ecotoxicol. Environ.
Saf., 104 (2014) 386–392.
- A. Fakhri, Application of response surface methodology to
optimize the process variables for fluoride ion removal using
maghemite nanoparticles, J. Saudi Chem. Soc., 18 (2014)
340–347.
- A. Fakhri, S. Behrouz, Comparison studies of adsorption
properties of MgO nanoparticles and ZnO–MgO
nanocomposites for linezolid antibiotic removal from aqueous
solution using response surface methodology, Process Saf.
Environ. Prot., 94 (2015) 37–43.
- M.J. Iqbal, M.N. Ashiq, Thermodynamics and kinetics of
adsorption of dyes from aqueous media onto alumina, J. Chem.
Soc. Pak., 12 (2010) 419–428.
- S.M.A. El-Gamal, M.S. Amin, M.A. Ahmed, Removal of methyl
orange and bromophenol blue dyes from aqueous solution
using Sorel’s cement nanoparticles, J. Environ. Chem. Eng., 3
(2015) 1702–1712.
- H. Hu, G. Chen, C. Deng, Y. Qian, M. Wang, Q. Zheng, Green
microwave-assisted synthesis of hierarchical NiO architectures
displaying a fast and high adsorption behavior for Congo red,
Mater. Lett., 170 (2016) 139–141.
- Y. Zheng, B. Zhu, H. Chen, W. You, C. Jiang, J. Yu, Hierarchical
flower-like nickel (II) oxide microspheres with high adsorption
capacity of Congo red in water, J. Colloid Interface Sci., 504
(2017) 688–696.
- C. Lei, X. Zhu, B. Zhu, J. Yu, W. Ho, Hierarchical NiO–SiO2
composite hollow microspheres with enhanced adsorption
affinity towards Congo red in water, J. Colloid Interface Sci.,
466 (2016) 238–246.
- Y.B. Shao, J.H. Huang, Synthesis and adsorption study of
nanobelts for removal of anionic dyes, Desal. Wat. Treat., 65
(2017) 327–336.
- M.H. Mahmoud, A.M. Elshahawy, S.A. Makhlouf, H.H.
Hamdeh, Mossbauer and magnetization studies of nickel
ferrite nanoparticles synthesized by the microwave combustion
method, J. Magn. Magn. Mater., 343 (2013) 21–26.
- R.W. Cairns, E. Ott, X-Ray Studies of the system nickel-oxygenwater.
I. Nickelous oxide and hydroxide, J. Am. Chem. Soc., 55
(1933) 527–533.
- S.K. Theydan, M.J. Ahmed, Adsorption of methylene blue
onto biomass-based activated carbon by FeCl3 activation:
equilibrium, kinetics, and thermodynamic studies, J. Anal.
Appl. Pyrol., 97 (2012) 116–122.
- G. Atun, G. Hisarli, W.S. Sheldrick, M. Muhlerler, Adsorptive
removal of methylene blue from colored effluents on fuller’s
earth, J. Colloid Interface Sci., 261 (2003) 32–39.
- T.W. Weber, P. Chakkravorti, Pore and solid diffusion models
for fixed-bed adsorbers, AIChE J., 20 (1974) 220–228.
- Y.S. Ho, Review of second-order models for adsorption systems,
J. Hazard. Mater., 136 (2006) 681–689.
- F. Ahmad, W.M.A.W. Daud, M.A. Ahmad, R. Radzi, Using
cocoa (Theobroma cacao) shell-based activated carbon to remove
4-nitrophenol from aqueous solution: kinetics and equilibrium
studies, Chem. Eng. J., 178 (2011) 461–467.
- W.T. Yao, S.H. Yu, Y. Zhou, Formation of uniform CuO
nanorods by spontaneous aggregation: selective synthesis of
CuO, Cu2O, and Cu nanoparticles by a solid-liquid phase arc
discharge process, J. Phys. Chem. B, 109 (2005) 14011–14016.
- L.G. Teoh, K.D. Li, Synthesis and characterization of NiO
nanoparticles by sol–gel method, Mater. Trans., 53 (2012)
2135–2140.
- S. Rabieh, M.N. Bagheri, M. Heydari, E. Badiei, Microwave
assisted synthesis of ZnO nanoparticles in ionic liquid [Bmim]
cl and their photocatalytic investigation, Mater. Sci. Semicond.
Process., 26 (2014) 244–250.
- Q. Baocheng, Z. Jiti, X. Xuemin, Z. Chunli, Z. Hongxia, Z.
Xiaobai, Adsorption behavior of Azo Dye C. I. Acid Red 14
in aqueous solution on surface soils, J. Environ. Sci., 20 (2008)
704–709.
- V.K. Gupta, B. Guptaa, A. Rastogi, S. Agarwal, A. Nayak, A
comparative investigation on adsorption performances of
mesoporous activated carbon prepared from waste rubber tire
and activated carbon for a hazardous azo dye-Acid Blue 113, J.
Hazard. Mater., 186 (2011) 891–901.
- H.A. AL-Aoh, M.J. Maah, R. Yahya, M.R. Bin Abas, A comparative
investigation on adsorption performances of activated carbon
prepared from coconut husk fiber and commercial activated
carbon for acid red 27 dye, Asian J. Chem., 25 (2013) 9582–9590.
- B.H. Hameed, A.A. Ahmad, Batch adsorption of methylene
blue from aqueous solution by garlic peel, an agricultural waste
biomass, J. Hazard. Mater., 164 (2009) 870–875.
- H.A. AL-Aoh, R. Yahya, M.J. Maah, M.R. Bin Abas, Adsorption
of methylene blue on activated carbon fiber prepared from
coconut husk: isotherm, kinetics and thermodynamics studies,
Desal. Wat. Treat., 52 (2014) 6720–6732.
- H.A. AL-Aoh, M.J. Maah, A.A. Ahmad, M.R. Bin Abas,
Adsorption of 4-nitrophenol on palm oil fuel ash activated
by amino silane coupling agent, Desal. Wat. Treat., 40 (2012)
159–167.
- X.L. Wu, Y. Shi, S. Zhong, H. Lin, J.R. Chen, Facile synthesis of
Fe3O4-graphene@mesoporous SiO2 nanocomposites for efficient
removal of Methylene Blue, Appl. Surf. Sci., 378 (2016) 80–86.
- H. Deng, J. Lu, G. Li, G. Zhang, X. Wang, Adsorption of
methylene blue on adsorbent materials produced from cotton
stalk, Chem. Eng. J., 172 (2011) 326–334.
- H.A. AL-Aoh, M.J. Maah, R. Yahya, M.R. Bin Abas, Isotherms,
kinetics and thermodynamics of 4-nitrophenol adsorption on
fiber-based activated carbon from coconut husks prepared
under optimized conditions, Asian J. Chem., 25 (2013)
9573–9581.
- A. Kurniawan, S. Ismadji, Potential utilization of Jatropha curcas L. press-cake residue as new precursor for activated carbon
preparation: application in methylene blue removal from
aqueous solution, J. Taiwan Inst. Chem. Eng., 42 (2011) 826–836.
- S.F. Soares, T.R. Simões, T. Trindade, A.L. Daniel-da-Silva,
Highly efficient removal of dye from water using magnetic
carrageenan/silica hybrid nano-adsorbents, Water Air Soil
Pollut., 228 (2017) 87.
- R. Lafi, A. Hafiane, Removal of methyl orange (MO) from
aqueous solution using cationic surfactants modified coffee
waste (MCWs), J. Taiwan Inst. Chem. Eng., 58 (2016) 424–433.
- A.O. Dada, A.A. Inyinbor, A.P. Oluyori, Comparative
adsorption of dyes onto activated carbon prepared from maize
stems and sugar cane stems, IOSR J. Appl. Chem., 2 (2012)
38–43.