References

  1. L. Yu-Juan, Z. Xi-Hai, Removal of organic-dye (bromophenol blue) by solvent solution, Chem. J. Chin. Univ., 21 (2000) 76–76.
  2. Y. Lu, Y. Wang, X. Zhu, The removal of bromophenol blue from water by solvent solution, Sep. Sci. Technol., 36 (2001) 3763–3776.
  3. R. Azmat, Z. Khalid, M. Haroon, K.B. Mehar, Spectral analysis of catalytic oxidation and degradation of bromophenol blue at low pH with potassium dichromate, Adv. Nat. Sci., 6 (2013) 38–43.
  4. J. Yang, S. Cui, J.Q. Qiao, H.Z. Lian, The photocatalytic dehalogenation of chlorophenols and bromophenols by cobalt doped nano TiO2, J. Mol. Catal. A Chem., 395 (2014) 42–51.
  5. Y. Absalan, I. Bratchikova, O.V. Kovalchukova, Accurate investigation to determine the best conditions for using NiTiO3 for bromophenol blue degradation in the environment under UV-Vis light based on concentration reduction and to compare it with TiO2, Environ. Nanotechnol. Monit. Manage., 8 (2017) 244–253.
  6. A. Nezamzadeh-Ejhieh, H. Zabihi-Mobarakeh, Heterogeneous photodecolorization of mixture of methylene blue and bromophenol blue using CuO-nano-clinoptilolite, J. Ind. Eng. Chem., 20 (2014) 1421–1431.
  7. N.K. Temel, R. Gürkan, F. Ayan, Photocatalytic TiO2-catalyzed degradation of bromophenol blue-mediated Mo(VI)-peroxo complexes in the presence of SDS, Desal. Wat. Treat., 57 (2016) 21083–21090.
  8. M. Ghaedi, A.M. Ghaedi, E. Negintaji, A. Ansari, A. Vafaei, M. Rajabi, Random forest model for removal of bromophenol blue using activated carbon obtained from Astragalus bisulcatus tree, J. Ind. Eng. Chem., 20 (2014) 1793–1803.
  9. S. Sohni, K. Gul, F. Ahmad, I. Ahmad, A. Khan, N. Khan, S.B. Khan, Highly efficient removal of acid red-17 and bromophenol blue dyes from industrial wastewater using graphene oxide functionalized magnetic chitosan composite, Polym. Compos. (2017). doi: 10.1002/pc.24349.
  10. L. Ai, L. Li, Efficient removal of organic dyes from aqueous solution with ecofriendly biomass-derived carbon@ montmorillonite nanocomposites by one-step hydrothermal process, Chem. Eng. J., 223 (2013) 688–695.
  11. S. Dhananasekaran, R. Palanivel, S. Pappu, Adsorption of methylene blue, bromophenol blue, and coomassie brilliant blue by α-chitin nanoparticles, J. Adv. Res., 7 (2016) 113–124.
  12. M.A. Malana, S. Ijaz, M.N. Ashiq, Removal of various dyes from aqueous media onto polymeric gels by adsorption process: their kinetics and thermodynamics, Desalination, 263 (2010) 249–257.
  13. L. You, Z. Wu, T. Kim, K. Lee, Kinetics and thermodynamics of bromophenol blue adsorption by a mesoporous hybrid gel derived from tetraethoxysilane and bis (trimethoxysilyl) hexane, J. Colloid Interface Sci., 300 (2006) 526–535.
  14. J. Liu, S. Yao, L. Wang, W. Zhu, J. Xu, H. Song, Adsorption of bromophenol blue from aqueous samples by novel supported ionic liquids, J. Chem. Technol. Biotechnol., 89 (2014) 230–238.
  15. H. Mazaheri, M. Ghaedi, A. Asfaram, S. Hajati, Performance of CuS nanoparticle loaded on activated carbon in the adsorption of methylene blue and bromophenol blue dyes in binary aqueous solutions: using ultrasound power and optimization by central composite design, J. Mol. Liq., 219 (2016) 667–676.
  16. A. Mohammadzadeh, M. Ramezani, A.M. Ghaedi, Synthesis and characterization of Fe2O3-ZnO-ZnFe2O4/carbon nanocomposite and its application to removal of bromophenol blue dye using ultrasonic assisted method: optimization by response surface methodology and genetic algorithm, J. Taiwan Inst. Chem. Eng., 59 (2016) 275–284.
  17. A.A. El-Zahhar, N.S. Awwad, E.E. El-Katori, Removal of bromophenol blue dye from industrial waste water by synthesizing polymer-clay composite, J. Mol. Liq., 199 (2014) 454–461.
  18. A. Fakhri, Investigation of mercury (II) adsorption from aqueous solution onto copper oxide nanoparticles: optimization using response surface methodology, Process Saf. Environ. Prot., 93 (2015) 1–8.
  19. A. Fakhri, Assessment of Ethidium bromide and Ethidium monoazide bromide removal from aqueous matrices by adsorption on cupric oxide nanoparticles, Ecotoxicol. Environ. Saf., 104 (2014) 386–392.
  20. A. Fakhri, Application of response surface methodology to optimize the process variables for fluoride ion removal using maghemite nanoparticles, J. Saudi Chem. Soc., 18 (2014) 340–347.
  21. A. Fakhri, S. Behrouz, Comparison studies of adsorption properties of MgO nanoparticles and ZnO–MgO nanocomposites for linezolid antibiotic removal from aqueous solution using response surface methodology, Process Saf. Environ. Prot., 94 (2015) 37–43.
  22. M.J. Iqbal, M.N. Ashiq, Thermodynamics and kinetics of adsorption of dyes from aqueous media onto alumina, J. Chem. Soc. Pak., 12 (2010) 419–428.
  23. S.M.A. El-Gamal, M.S. Amin, M.A. Ahmed, Removal of methyl orange and bromophenol blue dyes from aqueous solution using Sorel’s cement nanoparticles, J. Environ. Chem. Eng., 3 (2015) 1702–1712.
  24. H. Hu, G. Chen, C. Deng, Y. Qian, M. Wang, Q. Zheng, Green microwave-assisted synthesis of hierarchical NiO architectures displaying a fast and high adsorption behavior for Congo red, Mater. Lett., 170 (2016) 139–141.
  25. Y. Zheng, B. Zhu, H. Chen, W. You, C. Jiang, J. Yu, Hierarchical flower-like nickel (II) oxide microspheres with high adsorption capacity of Congo red in water, J. Colloid Interface Sci., 504 (2017) 688–696.
  26. C. Lei, X. Zhu, B. Zhu, J. Yu, W. Ho, Hierarchical NiO–SiO2 composite hollow microspheres with enhanced adsorption affinity towards Congo red in water, J. Colloid Interface Sci., 466 (2016) 238–246.
  27. Y.B. Shao, J.H. Huang, Synthesis and adsorption study of nanobelts for removal of anionic dyes, Desal. Wat. Treat., 65 (2017) 327–336.
  28. M.H. Mahmoud, A.M. Elshahawy, S.A. Makhlouf, H.H. Hamdeh, Mossbauer and magnetization studies of nickel ferrite nanoparticles synthesized by the microwave combustion method, J. Magn. Magn. Mater., 343 (2013) 21–26.
  29. R.W. Cairns, E. Ott, X-Ray Studies of the system nickel-oxygenwater. I. Nickelous oxide and hydroxide, J. Am. Chem. Soc., 55 (1933) 527–533.
  30. S.K. Theydan, M.J. Ahmed, Adsorption of methylene blue onto biomass-based activated carbon by FeCl3 activation: equilibrium, kinetics, and thermodynamic studies, J. Anal. Appl. Pyrol., 97 (2012) 116–122.
  31. G. Atun, G. Hisarli, W.S. Sheldrick, M. Muhlerler, Adsorptive removal of methylene blue from colored effluents on fuller’s earth, J. Colloid Interface Sci., 261 (2003) 32–39.
  32. T.W. Weber, P. Chakkravorti, Pore and solid diffusion models for fixed-bed adsorbers, AIChE J., 20 (1974) 220–228.
  33. Y.S. Ho, Review of second-order models for adsorption systems, J. Hazard. Mater., 136 (2006) 681–689.
  34. F. Ahmad, W.M.A.W. Daud, M.A. Ahmad, R. Radzi, Using cocoa (Theobroma cacao) shell-based activated carbon to remove 4-nitrophenol from aqueous solution: kinetics and equilibrium studies, Chem. Eng. J., 178 (2011) 461–467.
  35. W.T. Yao, S.H. Yu, Y. Zhou, Formation of uniform CuO nanorods by spontaneous aggregation: selective synthesis of CuO, Cu2O, and Cu nanoparticles by a solid-liquid phase arc discharge process, J. Phys. Chem. B, 109 (2005) 14011–14016.
  36. L.G. Teoh, K.D. Li, Synthesis and characterization of NiO nanoparticles by sol–gel method, Mater. Trans., 53 (2012) 2135–2140.
  37. S. Rabieh, M.N. Bagheri, M. Heydari, E. Badiei, Microwave assisted synthesis of ZnO nanoparticles in ionic liquid [Bmim] cl and their photocatalytic investigation, Mater. Sci. Semicond. Process., 26 (2014) 244–250.
  38. Q. Baocheng, Z. Jiti, X. Xuemin, Z. Chunli, Z. Hongxia, Z. Xiaobai, Adsorption behavior of Azo Dye C. I. Acid Red 14 in aqueous solution on surface soils, J. Environ. Sci., 20 (2008) 704–709.
  39. V.K. Gupta, B. Guptaa, A. Rastogi, S. Agarwal, A. Nayak, A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye-Acid Blue 113, J. Hazard. Mater., 186 (2011) 891–901.
  40. H.A. AL-Aoh, M.J. Maah, R. Yahya, M.R. Bin Abas, A comparative investigation on adsorption performances of activated carbon prepared from coconut husk fiber and commercial activated carbon for acid red 27 dye, Asian J. Chem., 25 (2013) 9582–9590.
  41. B.H. Hameed, A.A. Ahmad, Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass, J. Hazard. Mater., 164 (2009) 870–875.
  42. H.A. AL-Aoh, R. Yahya, M.J. Maah, M.R. Bin Abas, Adsorption of methylene blue on activated carbon fiber prepared from coconut husk: isotherm, kinetics and thermodynamics studies, Desal. Wat. Treat., 52 (2014) 6720–6732.
  43. H.A. AL-Aoh, M.J. Maah, A.A. Ahmad, M.R. Bin Abas, Adsorption of 4-nitrophenol on palm oil fuel ash activated by amino silane coupling agent, Desal. Wat. Treat., 40 (2012) 159–167.
  44. X.L. Wu, Y. Shi, S. Zhong, H. Lin, J.R. Chen, Facile synthesis of Fe3O4-graphene@mesoporous SiO2 nanocomposites for efficient removal of Methylene Blue, Appl. Surf. Sci., 378 (2016) 80–86.
  45. H. Deng, J. Lu, G. Li, G. Zhang, X. Wang, Adsorption of methylene blue on adsorbent materials produced from cotton stalk, Chem. Eng. J., 172 (2011) 326–334.
  46. H.A. AL-Aoh, M.J. Maah, R. Yahya, M.R. Bin Abas, Isotherms, kinetics and thermodynamics of 4-nitrophenol adsorption on fiber-based activated carbon from coconut husks prepared under optimized conditions, Asian J. Chem., 25 (2013) 9573–9581.
  47. A. Kurniawan, S. Ismadji, Potential utilization of Jatropha curcas L. press-cake residue as new precursor for activated carbon preparation: application in methylene blue removal from aqueous solution, J. Taiwan Inst. Chem. Eng., 42 (2011) 826–836.
  48. S.F. Soares, T.R. Simões, T. Trindade, A.L. Daniel-da-Silva, Highly efficient removal of dye from water using magnetic carrageenan/silica hybrid nano-adsorbents, Water Air Soil Pollut., 228 (2017) 87.
  49. R. Lafi, A. Hafiane, Removal of methyl orange (MO) from aqueous solution using cationic surfactants modified coffee waste (MCWs), J. Taiwan Inst. Chem. Eng., 58 (2016) 424–433.
  50. A.O. Dada, A.A. Inyinbor, A.P. Oluyori, Comparative adsorption of dyes onto activated carbon prepared from maize stems and sugar cane stems, IOSR J. Appl. Chem., 2 (2012) 38–43.