References

  1. A. Ostfeld, J.G. Uber, E. Salomons, J.W. Berry, W.E. Hart, The battle of the water sensor networks (BWSN): a design challenge for engineers and algorithms, J. Water Resour. Plann. Manage., 134 (2008) 556–568.
  2. J.B. Guan, M.M. Aral, M.L. Maslia, W.M. Grayman, Identification of contaminant sources in water distribution systems using simulation-optimization method: case study, J. Water Resour. Plann. Manage., 132 (2006) 252–262.
  3. A. Preis, A. Ostfeld, Genetic algorithm for contaminant source characterization using imperfect sensors, Civil Eng. Environ. Syst., 25 (2008) 29–39.
  4. E.M. Zechman, S.R. Ranjithan, Evolutionary computationbased methods for characterizing contaminant sources in a water distribution system, J. Water Resour. Plann. Manage., 135 (2009) 334–343.
  5. L. Mou, W. Menglin, L. Jie, D. Shen, Notice of Retraction Investigation on Backward Tracking of Contamination Sources in Water Supply Systems—Case Study, 2nd Conference on Environmental Science and Information Application Technology, Wuhan, 2010, pp. 484–487.
  6. L. Liu, S.R. Ranjithan, G. Mahinthakumar, Contamination source identification in water distribution systems using an adaptive dynamic optimization procedure, J. Water Resour. Plann. Manage., 137 (2010) 183–192.
  7. M. Jha, B. Datta, Application of dedicated monitoring—network design for unknown pollutant-source identification based on dynamic time warping, J. Water Resour. Plann. Manage., 141 (2015) 04015022.
  8. C.Y. Hu, J. Zhao, X.S. Yan, D.Z. Zeng, A MapReduce based Parallel Niche Genetic Algorithm for contaminant source identification in water distribution network, Ad Hoc Networks, 35 (2015) 116–126.
  9. X.S. Yan, J. Zhao, C.Y. Hu, Q.H. Wu, Contaminant source identification in water distribution network based on hybrid encoding, J. Comput. Methods Sci. Eng., 16 (2016) 379–390.
  10. X.S. Yan, W.Y. Gong, Q.H. Wu, Contaminant source identification of water distribution networks using cultural algorithm, Concurrency Comput. Pract. Exper., 29 (2017) e4230. doi: 10.1002/cpe.4230.
  11. X.S. Yan, J. Zhao, C.Y. Hu, D.Z. Zeng, Multimodal optimization problem in contamination source determination of water supply networks, Swarm Evol. Comput., (2017). doi: doi.org/10.1016/j. swevo.2017.05.010.
  12. X.S. Yan, Z.X. Zhu, T. Li, Pollution source localization in an urban water supply network based on dynamic water demand, Environ. Sci. Pollut. Res., (2017). doi: https://doi.org/10.1007/ s11356-017-0516-y.
  13. X.S. Yan, J. Sun, C.Y. Hu, Research on contaminant sources identification of uncertainty water demand using genetic algorithm, Cluster Comput., 20 (2017) 1007–1016.
  14. A. Rasekh, K. Brumbelow, A dynamic simulation–optimization model for adaptive management of urban water distribution system contamination threats, Appl. Soft Comput., 32 (2015) 59–71.
  15. D.R. Jones, M. Schonlau, W.J. Welch, Efficient global optimization of expensive black-box functions, J. Global Optim., 13 (1998) 455–492.
  16. Y.C. Jin, M. Olhofer, B. Sendhoff, A framework for evolutionary optimization with approximate fitness functions, IEEE Trans. Evol. Comput., 6 (2002) 481–494.
  17. R.G. Regis, C.A. Shoemaker, Local function approximation in evolutionary algorithms for the optimization of costly functions, IEEE Trans. Evol. Comput., 8 (2004) 490–505.
  18. Z.Z. Zhou, Y.S. Ong, P.B. Nair, A.J. Keane, K.Y. Lum, Combining global and local surrogate models to accelerate evolutionary optimization, IEEE Trans. Syst. Man Cybern. Part C Appl. Rev., 37 (2007) 66–76.
  19. I. Paenke, J. Branke, Y.C. Jin, Efficient search for robust solutions by means of evolutionary algorithms and fitness approximation, IEEE Trans. Evol. Comput., 10 (2006) 405–420.
  20. J.E. Fieldsend, R.M. Everson, On the Efficient Use of Uncertainty when Performing Expensive ROC Optimization, IEEE Congress on Evolutionary Computation, Hong Kong, 2008, pp. 3984–3991.
  21. W.D. Liu, Q.F. Zhang, E. Tsang, Fuzzy Clustering Based Gaussian Process Model for Large Training Set and Its Application in Expensive Evolutionary Optimization, IEEE Congress on Evolutionary Computation, Trondheim, Norway, 2009, pp. 2411–2415.
  22. S. Jeong, S. Obayashi, Efficient Global Optimization (EGO) for Multi-Objective Problem and Data Mining, IEEE Congress on Evolutionary Computation, Edinburgh, 2005, pp. 2138–2145.
  23. A.J. Keane, Statistical improvement criteria for use in multiobjective design optimization, AIAA J., 44 (2006), 879–891.
  24. W. Ponweiser, T. Wagner, D. Biermann, M. Vincze, Multiobjective Optimization on a Limited Budget of Evaluations Using Model- Assisted, International Conference on Parallel Problem Solving from Nature PPSN X, Dortmund, 2008, pp. 784–794.
  25. A. Zhou A, Q. F. Zhang, Y. C. Jin, Approximating the set of pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm, IEEE Trans. Evol. Comput., 13 (2009) 1167–1189.
  26. Y. Tenne, C.K. Goh, Computational Intelligence in Expensive Optimization Problems, Springer, Berlin, Heidelberg, 2012, p. 5.
  27. C.T. Luo, S.L. Zhang, C. Wang, Z.L. Jiang, A meta modelassisted evolutionary algorithm for expensive optimization, J. Comput. Appl. Math., 236 (2011) 759–764.
  28. H.K. Singh, A. Isaacs, T. Ray, A Hybrid Surrogate Based Algorithm (HSBA) to Solve Computationally Expensive Optimization Problems, IEEE Congress on Evolutionary Computation, Wuhan, 2014, pp. 1069–1075.
  29. B. Liu, Q.F. Zhang, G. Gielen, A Gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimization problems, IEEE Trans. Evol. Comput., 18 (2014) 180–192.
  30. K.S. Bhattacharjee, T. Ray, An Evolutionary Algorithm with Classifier Guided Constraint Evaluation Strategy for Computationally Expensive Optimization Problems, Australasian Joint Conference on Artificial Intelligence, Springer International Publishing, 2015, pp. 49–62.
  31. C.L. Sun, Y.C. Jin, R. Cheng, J.L. Ding, J.C. Zeng, Surrogateassisted cooperative swarm optimization of high-dimensional expensive problems, IEEE Trans. Evol. Comput., 21 (2017) 644–660.
  32. Z.L. Liu, China’s strategy for the development of renewable energies, Energy Sources Part B, 12 (2017) 971–975.
  33. H.L. Fu, X.J. Liu, Research on the phenomenon of Chinese residents’ spiritual contagion for the reuse of recycled water based on SC-IAT, Water, 9 (2017) 846.
  34. Z.W. Feng, Q.B. Zhang, Q.F. Zhang, Q.G. Tang, T. Yang, Y. Ma, A multiobjective optimization based framework to balance the global exploration and local exploitation in expensive optimization, J. Global Optim., 61 (2015) 677–694.
  35. Q.X. Wei, X.F. Liu, Q. Huang, G.Z. Cheng, The comparison of selection methods in different genetic algorithms, J. Commun. Comput., (2008) 61–65.