References
- B. Kwon, S. Lee, J. Cho, H. Ahn, D. Lee, H.S. Shin, Biodegradability,
DBP formation, and membrane fouling potential of
natural organic matter: Characterization and controllability,
Environ. Sci. Technol., 39 (2005) 732–739.
- D. Golea, A. Upton, P. Jarvis, G. Moore, S. Sutherland, S. Parsons,
S. Judd, THM and HAA formation from NOM in raw and
treated surface waters, Water Res., 112 (2017) 226–235.
- S. Kanitz, Y. Franco, V. Patrone, M. Caltabellotta, E. Raffo, C.
Riggi, D. Timitilli, G. Ravera, Association between drinking
water disinfection and somatic parameters at birth, Environ.
Health Perspect., 104 (1996) 516.
- J. Zavaleta, F. Hauchman, M. Cox, Epidemiology and toxicology
of disinfection by-products. Formation and control of disinfection
by-products in drinking water, (1999) 95–117.
- R. Sadiq, M.J. Rodriguez, Disinfection by-products (DBPs) in
drinking water and predictive models for their occurrence: a
review, Sci. Total Environ., 321 (2004) 21–46.
- World Health Organization (WHO). (2004). Guidelines for
drinking-water quality (Vol. 1). World Health Organization.
- USEPA (2006) National Primary Drinking Water standards.
- B. Ramavandi, S. Farjadfard, M. Ardjmand, S. Dobaradaran,
Effect of water quality and operational parameters on trihalomethanes
formation potential in Dez River water, Iran. Water
Resour. Res., 11 (2015) 1–12.
- S. Navalon, M. Alvaro, H. Garcia, Carbohydrates as trihalomethanes
precursors. Influence of pH and the presence of Cl and Br- on trihalomethane formation potential, Water Res., 42
(2008) 3990–4000.
- M. Saidan, K. Rawajfeh, M. Fayyad, Investigation of factors
affecting THMs formation in drinking water, Am. J. Environ.
Eng., 3 (2013) 207–212.
- E. Chaib, D. Moschandreas, Modeling daily variation of trihalomethane
compounds in drinking water system, Houston,
Texas. J. Hazard. Mater., 151 (2008) 662–668.
- R.M. Clark, M. Sivaganesan, Predicting chlorine residuals and
formation of TTHMs in drinking water, J. Environ. Eng., 124
(1998) 1203–1210.
- R.A. Francis, J.M. Van Briesen, M.J. Small, Bayesian statistical
modeling of disinfection byproduct (DBP) bromine incorporation
in the ICR database, Environ. Sci. Technol., 44 (2010)
1232–1239.
- H.C. Hong, Y. Liang, B.P. Han, A. Mazumder, M.H. Wong,
Modeling of trihalomethane (THM) formation via chlorination
of the water from Dongjiang River (source water for
Hong Kong’s drinking water), Sci. Total Environ., 385 (2007)
48–54.
- M.J. Rodriguez, J.-B. Sérodes, Spatial and temporal evolution
of trihalomethanes in three water distribution systems, Water
Res., 35 (2001) 1572–1586.
- M.J. Rodriguez, Y. Vinette, J.B. Sérodes, C. Bouchard, Trihalomethanes
in drinking water of greater Québec region (Canada):
occurrence, variations and modelling, Environ. Monit.
Assess., 89 (2003) 69–93.
- V. Uyak, I. Toroz, S. Meric, Monitoring and modeling of trihalomethanes
(THMs) for a water treatment plant in Istanbul,
Desalination, 176 (2005) 91–101.
- G. Zhang, B. Lin, R.A. Falconer, Modelling disinfection by-products
in contact tanks, J. Hydroinform., 2 (2000) 123–132.
- K.H. Cho, S. Sthiannopkao, Y.A. Pachepsky, K.W. Kim, J.H.
Kim, Prediction of contamination potential of groundwater
arsenic in Cambodia, Laos, and Thailand using artificial neural
network, Water Res., 45 (2011) 5535–5544.
- Y. Park, K.H. Cho, J. Park, S.M. Cha, J.H. Kim, Development
of early-warning protocol for predicting chlorophyll-a concentration
using machine learning models in freshwater and
estuarine reservoirs, Korea, Sci. Total Environ., 502 (2015)
31–41.
- P. Kulkarni, S. Chellam, Disinfection by-product formation following
chlorination of drinking water: Artificial neural network
models and changes in speciation with treatment, Sci.
Total Environ., 408 (2010) 4202–4210.
- N. Lewin, Q. Zhang, L. Chu, R. Shariff, Predicting total trihalomethane
formation in finished water using artificial neural
networks, J. Environ. Eng. Sci., 3 (2004) S35–S43.
- J. Milot, M.J. Rodriguez, J.B. Sérodes, Contribution of neural
networks for modeling trihalomethanes occurrence in drinking
water, J. Water Resour. Plan. Manage., 128 (2002) 370–376.
- R.A. Francis, M.J. Small, J.M. Van Briesen, Multivariate distributions
of disinfection by-products in chlorinated drinking
water, Water Res., 43 (2009) 3453–3468.
- L.E. Bergman, J.M. Wilson, M.J. Small, J.M. Van Briesen,
Application of classification trees for predicting disinfection
by-product formation targets from source water characteristics,
Environ. Eng. Sci., 33 (2016) 455–470.
- J. Benesty, J. Chen, Y. Huang, I. Cohen, Pearson correlation
coefficient. In Noise reduction in speech processing. Springer
Berlin Heidelberg (2009) 1–4.
- W.S. Mcculloch, W. Pitts, A logical calculus of the ideas immanent
in nervous activity (Reprinted from Bulletin of Mathematical
Biophysics, Vol 5, Pg 115–133, 1943). Bull. Math. Biol.,
52 (1990) 99–115.
- H. Guo, K. Jeong, J. Lim, J. Jo, Y.M. Kim, J.P. Park, J.H. Kim, K.H.
Cho, Prediction of effluent concentration in a wastewater treatment
plant using machine learning models, J. Environ. Sci., 32
(2015) 90–101.
- M. Kim, S. Baek, M. Ligaray, J. Pyo, M. Park, K.H. Cho, Comparative
studies of different imputation methods for recovering
stream flow observation, Water, 7 (2015) 6847–6860.
- M.K. Gill, T. Asefa, Y. Kaheil, M. Mckee, Effect of missing data
on performance of learning algorithms for hydrologic predictions:
Implications to an imputation technique, Water Resour.
Res., 43 (2007).
- M.B. Shukla, R. Kok, S.O. Prasher, G. Clark, R. Lacroix, Use of
artificial neural networks in transient drainage design, Trans.
ASAE, 39 (1996) 119–124.
- R. Rojas, Neural networks: a systematic introduction. Springer
Science & Business Media (2013).
- M.P. Abdullah, C.H. Yew, M.S. bin Ramli, Formation, modeling
and validation of trihalomethanes (THM) in Malaysian
drinking water: a case study in the districts of Tampin, Negeri
Sembilan and SabakBernam, Selangor, Malaysia, Water Res.,
37 (2003) 4637–4644.
- S.J. Ki, J.H. Kang, S.W. Lee, Y.S. Lee, K.H. Cho, K.G. An, J.H.
Kim, Advancing assessment and design of storm water monitoring
programs using a self-organizing map: Characterization
of trace metal concentration profiles in storm water runoff,
Water Res., 45 (2011) 4183–4197.
- R.Q. Huang, L.F. Xi, X.L. Li, C.R. Liu, H. Qiu, J. Lee, Residual
life predictions for ball bearings based on self-organizing map
and back propagation neural network methods, Mech. Syst.
Signal Process, 21 (2007) 193–207.
- T. Kohonen, T. Honkela, Kohonen network, Scholarpedia, 2
(2007) 1568.
- A.M. Kalteh, P. Hiorth, R. Bemdtsson, Review of the self-organizing
map (SOM) approach in water resources: Analysis,
modelling and application, Environ. Modell. Softw., 23 (2008)
835–845.
- M.A. Malek, S.M. Shamsuddin, Restoration of hydrological
data in the presence of missing data via Kohonen Self Organizing
Maps. New Trends in Technologies. In Tech (2010).
- R. Kohavi, A study of cross-validation and bootstrap for accuracy
estimation and model selection, In Ijcai 14 (1995) 1137–1145.
- D.N. Moriasi, J.G. Arnold, M.W. Van Liew, R.L. Bingner, R.D.
Harmel, T.L. Veith, Model evaluation guidelines for systematic
quantification of accuracy in watershed simulations, Trans.
ASAB, 50 (2007) 885–900.
- B.G. Oliver, D.B. Shindler, Trihalomethanes from the chlorination
of aquatic algae, Environ. Sci. Technol., 14 (1980) 1502–1505.
- D. Baytak, A. Sofuoglu, F. Inal, S.C. Sofuoglu, Seasonal variation
in drinking water concentrations of disinfection by-products
in IZMIR and associated human health risks, Sci. Total
Environ., 407 (2008) 286–296.
- M.A. El-Dib, R.K. Ali, THMs formation during chlorination of
raw Nile river water, Water Res., 29 (1995) 375–378.