References

  1. B. Kwon, S. Lee, J. Cho, H. Ahn, D. Lee, H.S. Shin, Biodegradability, DBP formation, and membrane fouling potential of natural organic matter: Characterization and controllability, Environ. Sci. Technol., 39 (2005) 732–739.
  2. D. Golea, A. Upton, P. Jarvis, G. Moore, S. Sutherland, S. Parsons, S. Judd, THM and HAA formation from NOM in raw and treated surface waters, Water Res., 112 (2017) 226–235.
  3. S. Kanitz, Y. Franco, V. Patrone, M. Caltabellotta, E. Raffo, C. Riggi, D. Timitilli, G. Ravera, Association between drinking water disinfection and somatic parameters at birth, Environ. Health Perspect., 104 (1996) 516.
  4. J. Zavaleta, F. Hauchman, M. Cox, Epidemiology and toxicology of disinfection by-products. Formation and control of disinfection by-products in drinking water, (1999) 95–117.
  5. R. Sadiq, M.J. Rodriguez, Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: a review, Sci. Total Environ., 321 (2004) 21–46.
  6. World Health Organization (WHO). (2004). Guidelines for drinking-water quality (Vol. 1). World Health Organization.
  7. USEPA (2006) National Primary Drinking Water standards.
  8. B. Ramavandi, S. Farjadfard, M. Ardjmand, S. Dobaradaran, Effect of water quality and operational parameters on trihalomethanes formation potential in Dez River water, Iran. Water Resour. Res., 11 (2015) 1–12.
  9. S. Navalon, M. Alvaro, H. Garcia, Carbohydrates as trihalomethanes precursors. Influence of pH and the presence of Cl and Br- on trihalomethane formation potential, Water Res., 42 (2008) 3990–4000.
  10. M. Saidan, K. Rawajfeh, M. Fayyad, Investigation of factors affecting THMs formation in drinking water, Am. J. Environ. Eng., 3 (2013) 207–212.
  11. E. Chaib, D. Moschandreas, Modeling daily variation of trihalomethane compounds in drinking water system, Houston, Texas. J. Hazard. Mater., 151 (2008) 662–668.
  12. R.M. Clark, M. Sivaganesan, Predicting chlorine residuals and formation of TTHMs in drinking water, J. Environ. Eng., 124 (1998) 1203–1210.
  13. R.A. Francis, J.M. Van Briesen, M.J. Small, Bayesian statistical modeling of disinfection byproduct (DBP) bromine incorporation in the ICR database, Environ. Sci. Technol., 44 (2010) 1232–1239.
  14. H.C. Hong, Y. Liang, B.P. Han, A. Mazumder, M.H. Wong, Modeling of trihalomethane (THM) formation via chlorination of the water from Dongjiang River (source water for Hong Kong’s drinking water), Sci. Total Environ., 385 (2007) 48–54.
  15. M.J. Rodriguez, J.-B. Sérodes, Spatial and temporal evolution of trihalomethanes in three water distribution systems, Water Res., 35 (2001) 1572–1586.
  16. M.J. Rodriguez, Y. Vinette, J.B. Sérodes, C. Bouchard, Trihalomethanes in drinking water of greater Québec region (Canada): occurrence, variations and modelling, Environ. Monit. Assess., 89 (2003) 69–93.
  17. V. Uyak, I. Toroz, S. Meric, Monitoring and modeling of trihalomethanes (THMs) for a water treatment plant in Istanbul, Desalination, 176 (2005) 91–101.
  18. G. Zhang, B. Lin, R.A. Falconer, Modelling disinfection by-products in contact tanks, J. Hydroinform., 2 (2000) 123–132.
  19. K.H. Cho, S. Sthiannopkao, Y.A. Pachepsky, K.W. Kim, J.H. Kim, Prediction of contamination potential of groundwater arsenic in Cambodia, Laos, and Thailand using artificial neural network, Water Res., 45 (2011) 5535–5544.
  20. Y. Park, K.H. Cho, J. Park, S.M. Cha, J.H. Kim, Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea, Sci. Total Environ., 502 (2015) 31–41.
  21. P. Kulkarni, S. Chellam, Disinfection by-product formation following chlorination of drinking water: Artificial neural network models and changes in speciation with treatment, Sci. Total Environ., 408 (2010) 4202–4210.
  22. N. Lewin, Q. Zhang, L. Chu, R. Shariff, Predicting total trihalomethane formation in finished water using artificial neural networks, J. Environ. Eng. Sci., 3 (2004) S35–S43.
  23. J. Milot, M.J. Rodriguez, J.B. Sérodes, Contribution of neural networks for modeling trihalomethanes occurrence in drinking water, J. Water Resour. Plan. Manage., 128 (2002) 370–376.
  24. R.A. Francis, M.J. Small, J.M. Van Briesen, Multivariate distributions of disinfection by-products in chlorinated drinking water, Water Res., 43 (2009) 3453–3468.
  25. L.E. Bergman, J.M. Wilson, M.J. Small, J.M. Van Briesen, Application of classification trees for predicting disinfection by-product formation targets from source water characteristics, Environ. Eng. Sci., 33 (2016) 455–470.
  26. J. Benesty, J. Chen, Y. Huang, I. Cohen, Pearson correlation coefficient. In Noise reduction in speech processing. Springer Berlin Heidelberg (2009) 1–4.
  27. W.S. Mcculloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity (Reprinted from Bulletin of Mathematical Biophysics, Vol 5, Pg 115–133, 1943). Bull. Math. Biol., 52 (1990) 99–115.
  28. H. Guo, K. Jeong, J. Lim, J. Jo, Y.M. Kim, J.P. Park, J.H. Kim, K.H. Cho, Prediction of effluent concentration in a wastewater treatment plant using machine learning models, J. Environ. Sci., 32 (2015) 90–101.
  29. M. Kim, S. Baek, M. Ligaray, J. Pyo, M. Park, K.H. Cho, Comparative studies of different imputation methods for recovering stream flow observation, Water, 7 (2015) 6847–6860.
  30. M.K. Gill, T. Asefa, Y. Kaheil, M. Mckee, Effect of missing data on performance of learning algorithms for hydrologic predictions: Implications to an imputation technique, Water Resour. Res., 43 (2007).
  31. M.B. Shukla, R. Kok, S.O. Prasher, G. Clark, R. Lacroix, Use of artificial neural networks in transient drainage design, Trans. ASAE, 39 (1996) 119–124.
  32. R. Rojas, Neural networks: a systematic introduction. Springer Science & Business Media (2013).
  33. M.P. Abdullah, C.H. Yew, M.S. bin Ramli, Formation, modeling and validation of trihalomethanes (THM) in Malaysian drinking water: a case study in the districts of Tampin, Negeri Sembilan and SabakBernam, Selangor, Malaysia, Water Res., 37 (2003) 4637–4644.
  34. S.J. Ki, J.H. Kang, S.W. Lee, Y.S. Lee, K.H. Cho, K.G. An, J.H. Kim, Advancing assessment and design of storm water monitoring programs using a self-organizing map: Characterization of trace metal concentration profiles in storm water runoff, Water Res., 45 (2011) 4183–4197.
  35. R.Q. Huang, L.F. Xi, X.L. Li, C.R. Liu, H. Qiu, J. Lee, Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods, Mech. Syst. Signal Process, 21 (2007) 193–207.
  36. T. Kohonen, T. Honkela, Kohonen network, Scholarpedia, 2 (2007) 1568.
  37. A.M. Kalteh, P. Hiorth, R. Bemdtsson, Review of the self-organizing map (SOM) approach in water resources: Analysis, modelling and application, Environ. Modell. Softw., 23 (2008) 835–845.
  38. M.A. Malek, S.M. Shamsuddin, Restoration of hydrological data in the presence of missing data via Kohonen Self Organizing Maps. New Trends in Technologies. In Tech (2010).
  39. R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, In Ijcai 14 (1995) 1137–1145.
  40. D.N. Moriasi, J.G. Arnold, M.W. Van Liew, R.L. Bingner, R.D. Harmel, T.L. Veith, Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, Trans. ASAB, 50 (2007) 885–900.
  41. B.G. Oliver, D.B. Shindler, Trihalomethanes from the chlorination of aquatic algae, Environ. Sci. Technol., 14 (1980) 1502–1505.
  42. D. Baytak, A. Sofuoglu, F. Inal, S.C. Sofuoglu, Seasonal variation in drinking water concentrations of disinfection by-products in IZMIR and associated human health risks, Sci. Total Environ., 407 (2008) 286–296.
  43. M.A. El-Dib, R.K. Ali, THMs formation during chlorination of raw Nile river water, Water Res., 29 (1995) 375–378.