References

  1. G. Rana, N. Katerji, M. Mastrorilli, Environmental and soilplant parameters for modelling actual crop evapotranspiration under water stress conditions, Ecol. Model, 101 (1997) 363–371.
  2. R.G. Allen, L.S. Pereira, D. Raes, M. Smith, Crop Evapotranspiration: Guidelines for computing crop water requirements. Rome, Italy, FAO Irrigation Drainage Paper, (1998) No. 56, 300p.
  3. J. Doorenbos, W.O. Pruitt, Crop Water Requirements, Irrigation Drainage Paper, No. 24. FAO. (1977). Rome, Italy.
  4. M. Kumar, N. Raghuwanshi, R. Singh, W. Wallender, W. Pruitt, Estimating evapotranspiration using artificial neural network, J. Irrig. Drain. E, 128(4) (2002) 224–233.
  5. A.J. Cannon, P.H. Whitfield, Downscaling recent streamflow conditions in British Columbia, Canada using ensemble neural network models, J. Hydrol., 259 (2002) 136–151.
  6. O. Kişi, Evapotranspiration estimation using feed-forward neural networks, J. Hydrol. Res., 37(3) (2006) 247–260.
  7. S. Zanetti, E. Sousa, V. Oliveira, F. Almeida, S. Bernardo, Estimating evapotranspiration using artificial neural network and minimum climatological data, J. Irrig. Drain. E., 133(2) (2007) 83–89.
  8. A.J. Adeloye, R. Rustum, I.D. Kariyama, Neural computing modeling of the reference crop evapotranspiration, Environ. Model. Softw., 29(1) (2012) 61–73.
  9. Ladlani, L. Houichi, L. Djemili, H. Salim, B. Khaled, Modeling daily reference evapotranspiration (ET0) in the north of Algeria using generalized regression neural networks (GRNN) and radial basis function neural networks (RBFNN): a comparative study, Meteorol. Atmos. Phys., 118 (2012) 163–178.
  10. O.O. Aladenola, C.A. Madramootoo, Evaluation of solar radiation estimation methods for reference evapotranspiration estimation in Canada, Theor. Appl. Climatol., 118(3) (2014) 377–385.
  11. O. Kisi, M. Cimen, Evapotranspiration modelling using support vector machines, Hydrolog. Sci. J., 54(5) (2009) 918–928.
  12. X. Wen, J. Si , Z. He, J. Wu, H. Shao, H. Yu, Support-vector-machine-based models or modeling daily reference evapotranspiration with limited climatic data in extreme arid regions, Water Resour Manag., 29 (2015) 3195–3209.
  13. O. Baydaroğlu, K. Koçak, K. Duran, River flow prediction using hybrid models of support vector regression with the wavelet transform, singular spectrum analysis and chaotic approach, Meteorol. Atmos. Phys., (2017).
  14. S. Trajkovic, M. Stankovic, B. Todorovic, Estimation of FAO Blaney-Criddle b Factor by RBF Network, J. Irrig. Drain. E, ASCE, 126(4) (2000) 268–27.
  15. J. Shiri, P. Marti, A.H. Nazemi, A.A. Sadraddini, O. Kisi, G. Landeras, A. Fakheri Fard, Local vs. external training of neuro-fuzzy and neural networks models for estimating reference evapotranspiration assessed through k-fold testing, J. Hydrol. Res., 46(1) (2015) 72–88.
  16. P. Marti, P. González-Altozano, R. López-Urrea, L.A. Mancha, J. Shiri, Modeling reference evapotranspiration with calculated targets: Assessment and implications, Agric. Water Manag., 149 (2015) 81–90.
  17. J. Shiri, A.A Sadraddini,A.H. Nazemi, P. Marti, A. Fakheri Fard, O. Kisi, G. Landeras, Independent testing for assessing the calibration of the Hargreaves–Samani equation: New heuristic alternatives for Iran, Comput. Electron. Agr., 117 (2015) 70–80.
  18. J. Shiri, A.H. Nazemi, A.A. Sadraddini, G. Landeras, O. Kisi, A. Fakheri Fard, P. Marti, Comparison of heuristic and empirical approaches for estimating reference evapotranspiration from limited inputs in Iran, Comput. Electron. Agr., 108 (2014) 230– 241.
  19. S. Kim, J. Shiri, V.P. Singh, O. Kisi, G. Landeras, Predicting daily pan evaporation by soft computing models with limited climatic data, Hydrolog. Sci. J., 60(6) (2015) 1120–1136.
  20. G. Landeras, E. Bekoe, J. Ampofo, F. Logah, M. Diop, M. Cisse, J. Shiri, New alternatives for reference evapotranspiration estimation in West Africa using limited weather data and ancillary data supply strategies, Theor. Appl. Climatol., (2017) DOI: 10.1007/s00704-017-2120-y.
  21. J. Shiri, Evaluation of FAO56-PM, empirical, semi-empirical and gene expression programming approaches for estimating daily reference evapotranspiration in hyper-arid regions of Iran, Agric. Water Manag., 188 (2017) 101–114.
  22. J. Shiri, P. Marti, V.P. Singh, Evaluation of gene expression programming approaches for estimating daily evaporation through spatial and temporal data scanning, Hydrol. Process., 28(3) (2014) 1215–1225.
  23. R. Fletcher, (2013) Practical Methods of Optimization: John Wiley & Sons, Chichester, West Sussex England.
  24. B. Guo, S.R. Gunn, R.I. Damper, J.D. Nelso, Customizing kernel functions for SVM-based hyperspectral image classification, IEEE Trans. Image Process, 17(4) (2008) 622–629.
  25. T. Kavzoglu, I. Colkesen, A kernel functions analysis for support vector machines for land cover classification, Int. J. Appl. Earth Obs. Geoinf., 11(5) (2009) 352–359.
  26. D. Basak, S. Pal, D.C. Patranabis, Support vector regression, Natl. Westm. Bank Q R., 11(10) (2007) 203–224.
  27. G.Q. Liu, (2011) Comparison of regression and ARIMA models with neural network models to forecast the daily streamflow of White Clay Creek, Dissertation, University of Delaware.
  28. V.N. Vapnik, A.J. Chervonenkis, The necessary and sufficient conditions for consistency of the method of empirical risk, Pattern Recog. Image Anal., 1(3) (1991) 284–305.
  29. R.S Govindaraju, Artificial neural networks in hydrology, I: Preliminary concepts, J. Hydro. Eng., 5(2) (2000) 115–123.
  30. C.M. Zealand, D.H. Burn, S.P. Simonovic, Short term streamflow forecasting using artificial neural networks, J. Hydrology, 214(1) (1999) 32–48.