References
- G. Rana, N. Katerji, M. Mastrorilli, Environmental and soilplant
parameters for modelling actual crop evapotranspiration
under water stress conditions, Ecol. Model, 101 (1997) 363–371.
- R.G. Allen, L.S. Pereira, D. Raes, M. Smith, Crop Evapotranspiration:
Guidelines for computing crop water requirements. Rome,
Italy, FAO Irrigation Drainage Paper, (1998) No. 56, 300p.
- J. Doorenbos, W.O. Pruitt, Crop Water Requirements, Irrigation
Drainage Paper, No. 24. FAO. (1977). Rome, Italy.
- M. Kumar, N. Raghuwanshi, R. Singh, W. Wallender, W. Pruitt,
Estimating evapotranspiration using artificial neural network,
J. Irrig. Drain. E, 128(4) (2002) 224–233.
- A.J. Cannon, P.H. Whitfield, Downscaling recent streamflow
conditions in British Columbia, Canada using ensemble neural
network models, J. Hydrol., 259 (2002) 136–151.
- O. Kişi, Evapotranspiration estimation using feed-forward
neural networks, J. Hydrol. Res., 37(3) (2006) 247–260.
- S. Zanetti, E. Sousa, V. Oliveira, F. Almeida, S. Bernardo, Estimating
evapotranspiration using artificial neural network and
minimum climatological data, J. Irrig. Drain. E., 133(2) (2007)
83–89.
- A.J. Adeloye, R. Rustum, I.D. Kariyama, Neural computing
modeling of the reference crop evapotranspiration, Environ.
Model. Softw., 29(1) (2012) 61–73.
- Ladlani, L. Houichi, L. Djemili, H. Salim, B. Khaled, Modeling
daily reference evapotranspiration (ET0) in the north of Algeria
using generalized regression neural networks (GRNN) and
radial basis function neural networks (RBFNN): a comparative
study, Meteorol. Atmos. Phys., 118 (2012) 163–178.
- O.O. Aladenola, C.A. Madramootoo, Evaluation of solar radiation
estimation methods for reference evapotranspiration
estimation in Canada, Theor. Appl. Climatol., 118(3) (2014)
377–385.
- O. Kisi, M. Cimen, Evapotranspiration modelling using
support vector machines, Hydrolog. Sci. J., 54(5) (2009)
918–928.
- X. Wen, J. Si , Z. He, J. Wu, H. Shao, H. Yu, Support-vector-machine-based models or modeling daily reference evapotranspiration
with limited climatic data in extreme arid regions,
Water Resour Manag., 29 (2015) 3195–3209.
- O. Baydaroğlu, K. Koçak, K. Duran, River flow prediction using
hybrid models of support vector regression with the wavelet
transform, singular spectrum analysis and chaotic approach,
Meteorol. Atmos. Phys., (2017).
- S. Trajkovic, M. Stankovic, B. Todorovic, Estimation of FAO
Blaney-Criddle b Factor by RBF Network, J. Irrig. Drain. E,
ASCE, 126(4) (2000) 268–27.
- J. Shiri, P. Marti, A.H. Nazemi, A.A. Sadraddini, O. Kisi, G.
Landeras, A. Fakheri Fard, Local vs. external training of neuro-fuzzy and neural networks models for estimating reference
evapotranspiration assessed through k-fold testing, J. Hydrol.
Res., 46(1) (2015) 72–88.
- P. Marti, P. González-Altozano, R. López-Urrea, L.A. Mancha,
J. Shiri, Modeling reference evapotranspiration with calculated
targets: Assessment and implications, Agric. Water
Manag., 149 (2015) 81–90.
- J. Shiri, A.A Sadraddini,A.H. Nazemi, P. Marti, A. Fakheri
Fard, O. Kisi, G. Landeras, Independent testing for assessing
the calibration of the Hargreaves–Samani equation: New heuristic
alternatives for Iran, Comput. Electron. Agr., 117 (2015)
70–80.
- J. Shiri, A.H. Nazemi, A.A. Sadraddini, G. Landeras, O. Kisi, A.
Fakheri Fard, P. Marti, Comparison of heuristic and empirical
approaches for estimating reference evapotranspiration from
limited inputs in Iran, Comput. Electron. Agr., 108 (2014) 230–
241.
- S. Kim, J. Shiri, V.P. Singh, O. Kisi, G. Landeras, Predicting
daily pan evaporation by soft computing models with limited
climatic data, Hydrolog. Sci. J., 60(6) (2015) 1120–1136.
- G. Landeras, E. Bekoe, J. Ampofo, F. Logah, M. Diop, M. Cisse,
J. Shiri, New alternatives for reference evapotranspiration estimation
in West Africa using limited weather data and ancillary
data supply strategies, Theor. Appl. Climatol., (2017) DOI:
10.1007/s00704-017-2120-y.
- J. Shiri, Evaluation of FAO56-PM, empirical, semi-empirical
and gene expression programming approaches for estimating
daily reference evapotranspiration in hyper-arid regions of
Iran, Agric. Water Manag., 188 (2017) 101–114.
- J. Shiri, P. Marti, V.P. Singh, Evaluation of gene expression
programming approaches for estimating daily evaporation
through spatial and temporal data scanning, Hydrol. Process.,
28(3) (2014) 1215–1225.
- R. Fletcher, (2013) Practical Methods of Optimization: John
Wiley & Sons, Chichester, West Sussex England.
- B. Guo, S.R. Gunn, R.I. Damper, J.D. Nelso, Customizing kernel
functions for SVM-based hyperspectral image classification,
IEEE Trans. Image Process, 17(4) (2008) 622–629.
- T. Kavzoglu, I. Colkesen, A kernel functions analysis for support
vector machines for land cover classification, Int. J. Appl.
Earth Obs. Geoinf., 11(5) (2009) 352–359.
- D. Basak, S. Pal, D.C. Patranabis, Support vector regression,
Natl. Westm. Bank Q R., 11(10) (2007) 203–224.
- G.Q. Liu, (2011) Comparison of regression and ARIMA models
with neural network models to forecast the daily streamflow
of White Clay Creek, Dissertation, University of Delaware.
- V.N. Vapnik, A.J. Chervonenkis, The necessary and sufficient
conditions for consistency of the method of empirical risk, Pattern
Recog. Image Anal., 1(3) (1991) 284–305.
- R.S Govindaraju, Artificial neural networks in hydrology, I:
Preliminary concepts, J. Hydro. Eng., 5(2) (2000) 115–123.
- C.M. Zealand, D.H. Burn, S.P. Simonovic, Short term streamflow
forecasting using artificial neural networks, J. Hydrology,
214(1) (1999) 32–48.