References

  1. H. El Sayed, A. El Nemr, S.A. Essawy, S. Ragab, Corrosion inhibitors Part V: QSAR of benzimidazole and 2-substituted derivatives as corrosion inhibitors by using the quantum chemical parameters, Progr. Org. Coat., 61 (2008) 11–20.
  2. E.S.H. El Ashry, A. El Nemr, S.A. Essawy, S. Ragab, Corrosion inhibitors-Part II: Quantum chemical studies on the corrosion inhibitions of steel in acidic medium by some triazole, oxadiazole and thiadiazole derivatives, Electrochim. Acta., 51 (2006) 3957–3968.
  3. E. Khamis, F. Bellucci, R.M. Latanision, E.S.H. El Ashry, Acid corrosion inhibition of nickel by 2-(triphenylphosphoranylidene) succinic anhydride, Corrosion, 47 (1991) 677–686.
  4. E. Khamis, E.S.H. El Ashry, A.K. Ibrahim, Synergistic action of vinyl triphenylphosphonium bromide with various anions on corrosion of steel, Br. Corros. J., 35 (2000) 150–154.
  5. A. Stoyanova, G. Petkova, S.D. Peyerimhoff, Correlation between the molecular structure and the corrosion inhibiting effect of some pyrophthalone compounds, Chem. Phys., 279 (2002) 1–6.
  6. M.A. Migahed, Electrochemical investigation of the corrosion behavior of mild steel in 2M HCl solution in presence of 1-dodecyl-4-methoxy pyridinium bromide, Mater. Chem. Phys., 93 (2005) 48–53.
  7. A. Dadgarnezhad, I. Sheikhshoaie, F. Baghaei, Corrosion inhibitory effects of a new synthetic symmetrical Schiff-base on carbon steel in acid media, Anti-Corros. Methods Mater., 51 (2004) 266–271.
  8. G. Bereket, A. Pinarbasi, C. Ogretir, Benzimidazole-2-tione and benzoxazole-2-tione derivatives as corrosion inhibitors for aluminium in hydrochloric acid, Anti-Corros. Methods Mater., 51 (2004) 282–293.
  9. M.A. Quraishi, R. Sardar, Corrosion inhibition of mild steel in acid solutions by some aromatic oxadiazoles, Mater. Chem. Phys., 78 (2003) 425–431.
  10. H. Ashassi-Sorkhabi, B. Shaabani, D. Seifzadeh, Effect of some pyrimidine Schiff bases on the corrosion of mild steel in hydrochloric acid solution, Electrochim. Acta., 50 (2005) 3446–3452.
  11. H.L. Wang, H.B. Fan, J.S. Zheng, Corrosion inhibition of mild steel in hydrochloric acid solution by a mercapto-triazole compound, Mater. Chem. Phys., 77 (2003) 655–661.
  12. S. Martinez, I. Stagljar, Correlation between the molecular structure and the corrosion inhibition efficiency of chestnut tannin in acidic solutions, J. Molec. Struct. (Theochem), 640 (2003) 167–174.
  13. K.F. Khaled, K. Babic-Samardzija, N. Hackerman, Piperidines as corrosion inhibitors for iron in hydrochloric acid, J. Appl. Electrochem., 34 (2004) 697–704.
  14. I. Lukovits, A. Shaban, E. Kálmán, Thiosemicarbazides and thiosemicarbazones: Non-linear quantitative structure–efficiency model of corrosion inhibition, Electrochim. Acta., 50 (2005) 4128–4133.
  15. A. Lesar, I. Milošev, Density functional study of the corrosion inhibition properties of 1, 2, 4-triazole and its amino derivatives, Chem. Phys. Lett., 483 (2009) 198–203.
  16. E. Jamalizadeh, S.M.A. Hosseini, A.H. Jafari, Quantum chemical studies on corrosion inhibition of some lactones on mild steel in acid media, Corros. Sci., 51 (2009) 1428–1435.
  17. T. Arslan, F. Kandemirli, E.E. Ebenso, I. Love, H.M. Alemu, Quantum chemical studies on the corrosion inhibition of some sulphonamides on mild steel in acidic medium, Corros. Sci., 51 (2009) 35–47.
  18. I.B. Obot, N.O. Obi-Egbedi, Theoretical study of benzimidazole and its derivatives and their potential activity as corrosion inhibitors, Corros. Sci., 52 (2010) 657–660.
  19. M.K. Awad, M.R. Mustafa, M.M.A. Elnga, Computational simulation of the molecular structure of some triazoles as inhibitors for the corrosion of metal surface, Theochem., 959 (2010) 66–74.
  20. I. Ahamad, R. Prasad, M.A. Quraishi, Inhibition of mild steel corrosion in acid solution by pheniramine drug: Experimental and theoretical study, Corros. Sci., 52 (2010) 3033–3041.
  21. P. Zhao, Q. Liang, Y. Li, Electrochemical, SEM/EDS and quantum chemical study of phthalocyanines as corrosion inhibitors for mild steel in 1 mol/l HCl, Appl. Surf. Sci., 252 (2005) 1596– 1607.
  22. F. Bentiss, M. Lebrini, M. Lagrenee, Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in mild steel/2, 5-bis (n-thienyl)-1, 3, 4-thiadiazoles/ hydrochloric acid system, Corros. Sci., 47 (2005) 2915–2931.
  23. J. Vosta, J. Eliasek, Study on corrosion inhibition from aspect of quantum chemistry, Corros. Sci., 11 (1971) 223–229.
  24. Z. El Adnani, M. Mcharfi, M. Sfaira, M. Benzakour, A.T. Benjelloun, M.E. Touhami, DFT study of 7-R-3methylquinoxalin-2 (1H)-ones (R= H; CH3; Cl) as corrosion inhibitors in hydrochloric acid, Int. J. Electrochem. Sci., 7 (2012) 6738–6751.
  25. O. Mokhtari, I. Hamdani, A. Chetouani, A. Lahrach, H. El Halouani, A. Aouniti, M. Berrabah, Inhibition of steel corrosion in 1M HCl by Jatropha curcas oil, J. Mater. Environ. Sci., 5 (2014) 310–319.
  26. S.S. Shivakumar, K.N. Mohana, Corrosion behavior and adsorption thermodynamics of some Schiff bases on mild steel corrosion in industrial water medium, Int. J. Corros., (2013), http://dx.doi.org/10.1155/2013/543204.
  27. Z. El Adnani, M. Mcharfi, M. Sfaira, M. Benzakour, A.T. Benjelloun, M. Ebn Touhami, DFT theoretical study of 7-R-3-methylquinoxalin-2 (1H)-thiones (R= H; CH3; Cl) as corrosion inhibitors in hydrochloric acid, Corros. Sci., 68 (2013) 223–230.
  28. S.G. Zhang, W. Lei, M.Z. Xia, F.Y. Wang, Quantum chemical approach assisted by topological index, J. Molec. Struct. (Theochem), 732 (2005) 173–182.
  29. D. Glossman-Mitnik, CBS-QB3 calculation of quantum chemical molecular descriptors of isomeric thiadiazoles, J. Molec. Graphics Model., 25 (2006) 455–458.
  30. H. El Sayed, S.A. Senior, QSAR of lauric hydrazide and its salts as corrosion inhibitors by using the quantum chemical and topological descriptors, Corros. Sci., 53 (2011) 1025–1034.
  31. K.F. Khaled, Modeling corrosion inhibition of iron in acid medium by genetic function approximation method: A QSAR model, Corros. Sci., 53 (2011) 3457–3465.
  32. R. Todeschini, V. Consonni, A. Mauri, M. Pavan, Detecting ″bad″ regression models: Multi-criteria fitness functions in regression analysis, Anal. Chim. Acta., 515 (2004) 199–208.
  33. V. Consonni, D. Ballabio, R. Todeschini, Comments on the definition of the Q2 parameter for QSAR validation, J. Chem. Inf. Model., 49 (2009) 1669–1678.
  34. F.B. Growcock, Inhibition of steel corrosion in HCl by derivatives of cinnamaldehyde: Part I. Corrosion inhibition model, Corrosion, 45 (1989) 1003–1007.
  35. F.B. Growcock, W.W. Frenier, P.A. Andreozzi, Inhibition of steel corrosion in HCl by derivatives of cinnamaldehyde: Part II. Structure–activity correlations, Corrosion, 45 (1989) 1007– 1015.
  36. P.G. Abdul-Ahad, S.H.F. Al-Madfai, Elucidation of corrosion inhibition mechanism by means of calculated electronic indexes, Corrosion, 45 (1989) 978–980.
  37. S. Cosnier, P. Dupin, D. Lavabre, A. Savignac, M. Comtat, A. Lattes, Electrocapillary study of the adsorption of 4-alkyl pyridine chlorides, Electrochim. Acta., 31 (1986) 1213–1218.
  38. I. Lucovits, K. Palfi, I. Bako, E. Kalman, LKP model of the inhibition mechanism of thiourea compounds, Corrosion, 53 (1997) 915–919.
  39. I. Lukovits, E. Kalman, G. Palinkas, Nonlinear group-contribution models of corrosion inhibition, Corrosion, 51 (1995) 201–205.
  40. I. Lukovits, I. Bakó, A. Shaban, E. Kálmán, Polynomial model of the inhibition mechanism of thiourea derivatives, Electrochim. Acta., 43 (1998) 131–136.
  41. F. Bentiss, M. Traisnel, H. Vezin, M. Lagrenée, Linear resistance model of the inhibition mechanism of steel in HCl by triazole and oxadiazole derivatives: Structure–activity correlations, Corros. Sci., 45 (2003) 371–380.
  42. M. Lebrini, M. Lagrenee, H. Vezin, L. Gengembre, F. Bentiss, Electrochemical and quantum chemical studies of new thiadiazole derivatives adsorption on mild steel in normal hydrochloric acid medium, Corros. Sci., 47 (2005) 485–505.
  43. Y. Abboud, B. Ihssane, B. Hammouti, A. Abourriche, S. Maoufoud, T. Saffaj, M. Berradaa, M. Charrouf, A. Bennamara, H. Hannache, Effect of some new diazole derivatives on the corrosion behavior of steel in 1M HCl, Desal. Water Treat., 20 (2010) 35–44.
  44. G. Gece, The use of quantum chemical methods in corrosion inhibitor studies, Corros. Sci., 50 (2008) 2981–2992.
  45. M. Bouayed, H. Rabaa, A. Srhiri, J.Y. Saillard, A. Ben Bachir, A. Le Beuze, Experimental and theoretical study of organic corrosion inhibitors on iron in acidic medium, Corros. Sci., 41 (1998) 501–517.
  46. H. Ma, S. Chen, Z. Liu, Y. Sun, Theoretical elucidation on the inhibition mechanism of pyridine–pyrazole compound: A Hartree Fock study, J. Mol. Struct. (Theochem), 774 (2006) 19–22.
  47. J.H. Henriquez-Roman, L. Padilla-Campos, M.A. Paez, J.H. Zagal, M.A. Rubio, C.M. Rangel, J. Costamagna, G. Cardenas- Jiron, The influence of aniline and its derivatives on the corrosion behavior of copper in acid solution: A theoretical approach, J. Mol. Struct. (Theochem), 757 (2005), 1–7.
  48. H. Ma, T. Song, H. Sun, X. Li, Experimental and theoretical elucidation on the inhibition mechanism of 1-methyl-5-mercapto-1,2,3,4-tetrazole self-assembled films on corrosion of iron in 0.5M H2SO4 Solutions, Thin Solid Films, 516 (2008) 1020–1024.
  49. N. Boussalah, S. Ghalem, S. El Kadiri, B. Hammouti, R. Touzani, Theoretical study of the corrosion inhibition of some bipyrazolic derivatives: A conceptual DFT investigation Res. Chem. Interm., 38 (2012) 2009–2023.
  50. N.O. Obi-Egbedi, I.B. Obot, Inhibitive properties, thermodynamic and quantum chemical studies of alloxazine on mild steel corrosion in H2SO4, Corros. Sci., 53 (2011) 263–275.
  51. S.E. Nataraja, T.V. Venkatesha, H.C. Tandon, B.S. Shylesha, Quantum chemical and experimental characterization of the effect of ziprasidone on the corrosion inhibition of steel in acid media, Corros. Sci., 53 (2011) 4109–4117.
  52. K. Benbouya, B. Zerga, M. Sfaira, M. Taleb, M. Ebn Touhami, B. Hammouti, H. Benzeid, E.M. Essassi, WL, IE and EIS studies on the corrosion behavior of mild steel by 7-substituted 3-methylquinoxalin-2 (1H)-ones and thiones in hydrochloric acid medium, Int. J. Electrochem. Sci., 7 (2012) 6313–6330.
  53. C.C. Zhan, J.A. Nichols, D.A. Dixon, Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: Molecular properties from density functional theory orbital energies, J. Phys. Chem. A., 107 (2003) 4184–4195.
  54. K.F. Khaled, Studies of iron corrosion inhibition using chemical, electrochemical and computer simulation techniques, Electrochim. Acta., 22 (2010) 6523–6532.
  55. V.S. Sastri, J.R. Perumareddi, Molecular orbital theoretical studies of some organic corrosion inhibitors, Corrosion, 53 (1997) 617–622.
  56. H. Abdi, Partial least square regression (PLS regression), Encyclopedia for Research Methods for the Social Sciences, 10 (2003) 792–795.
  57. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, 03, Revision B.01, Inc., Pittsburgh PA, (2003).
  58. G. Gece, S. Bilgiç, Quantum chemical study of some cyclic nitrogen compounds as corrosion inhibitors of steel in NaCl media, Corros. Sci., 51 (2009) 1876–1878.
  59. I.B. Obot, N.O. Obi-Egbedi, S.A. Umoren, Adsorption characteristics and corrosion inhibitive properties of clotrimazole for aluminium corrosion in hydrochloric acid, Int. J. Electr. Chem. Sci., 4 (2009) 863–877.
  60. N.O. Obi-Egbedi, I.B. Obot, M.I. El-Khaiary, S.A. Umoren, E.E. Ebenso, Computational simulation and statistical analysis on the relationship between corrosion inhibition efficiency and molecular structure of some phenanthroline derivatives on mild steel surface, Int. J. Electrochem. Sci., 6 (2011) 5649–5675.
  61. M.A. Quraishi, R. Sardar, Hector bases–a new class of heterocyclic corrosion inhibitors for mild steel in acid solutions, J. Appl. Electrochem., 33 (2003) 1163–1168.
  62. P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Phys. Rev., 136 (1964) 864–871.
  63. I. Lukovits, E. Kalman, F. Zucchi, Corrosion inhibitors–correlation between electronic structure and efficiency, Corrosion, 57 (2001) 3–8.
  64. M. Jalali-Heravi, A. Kyani, Use of computer-assisted methods for the modeling of the retention time of a variety of volatile organic compounds: A PCA-MLR-ANN approach, J. Chem. Inf. Comput. Sci., 44 (2004) 1328–1335.
  65. J.M. Roque, T. Pandiyan, J. Crus, E. Garcia-Ochoa, DFT and electrochemical studies of tris (benzimidazole-2-ylmethyl) amine as an efficient corrosion inhibitor for carbon steel surface, Corros. Sci., 50 (2008) 614–624.
  66. Y. Abboud, A. Abourriche, T. Saffaj, M. Berrada, M. Charrouf, A. Bennamara, A. Cherqaoui, D. Takky, The inhibition of mild steel corrosion in acidic medium by 2, 2′-bis (benzimidazole), Appl. Surf. Sci., 252 (2006) 8178–8184.
  67. X. Wang, H. Yang, F. Wang, An investigation of benzimidazole derivative as corrosion inhibitor for mild steel in different concentration HCl solutions, Corros. Sci., 53 (2011) 113–121.
  68. F. Zhang, Y. Tang, Z. Cao, W. Jing, Z. Wu, Y. Chen, Performance and theoretical study on corrosion inhibition of 2-(4-pyridyl)- benzimidazole for mild steel in hydrochloric acid, Corros. Sci., 61 (2012) 1–9.
  69. Y. Tang, F. Zhang, S. Hu, Z. Cao, Z. Wu, W. Jing, Novel benzimidazole derivatives as corrosion inhibitors of mild steel in the acidic media. Part I: Gravimetric, electrochemical, SEM and XPS studies, Corros. Sci., 74 (2013) 271–282.
  70. A. Dutta, S.K. Saha, P. Banerjee, D. Sukul, Correlating electronic structure with corrosion inhibition potentiality of some bis-benzimidazole derivatives for mild steel in hydrochloric acid: Combined experimental and theoretical studies, Corros. Sci., 98 (2015) 541–550.
  71. J. Aljourani, K. Raeissi, M.A. Golozar, Benzimidazole and its derivatives as corrosion inhibitors for mild steel in 1M HCl solution, Corros. Sci., 51 (2009) 1836–1843.
  72. M. Mahdavian, S. Ashhari, Corrosion inhibition performance of 2-mercaptobenzimidazole and 2-mercaptobenzoxazole compounds for protection of mild steel in hydrochloric acid solution, Electrochim. Acta., 55 (2010) 1720–1724.
  73. X. Wang, Y. Wan, Y. Zeng, Y. Gu, Investigation of benzimidazole compound as a novel corrosion inhibitor for mild steel in hydrochloric acid solution, Int. J. Electrochem. Sci., 7 (2012) 2403–2415.