References
- P. Heptonstall, A. Lyngfelt, Z. Makuch, E. Mangano, R.T.J. Porter,
M. Pourkashanian, G.T. Rochelle, N. Shah, J.G. Yao, P.S.
Fenell, Carbon capture and storage update, Energy Environ.
Sci., 7 (2014) 130–189.
- J. Albo, A. Irabien, Non-dispersive absorption of CO2 in parallel
and cross-flow membrane modules using EMISE, J. Chem.
Technol. Biot., 87 (2012) 1502–1507.
- J. Albo, P. Luis, A. Irabien, Absorption of coal combustion flue
gases in ionic liquids using different membrane contactors,
Desal. Water Treat., 27(1–3) (2011) 54–59.
- D.T. Whipple, P.J.A. Kenis, Prospects of CO2 utilization via
direct heterogeneous electrochemical reduction, J. Phys.
Chem. Lett., 1 (2010) 3451–3458.
- M. Alvarez-Guerra, S. Quintanilla, A. Irabien, Conversion of
carbon dioxide into formate using a continuous electrochemical
reduction process in a lead cathode, Chem. Eng. J., 207
(2012) 278–284.
- J. Albo, M. Alvarez-Guerra, P. Castaño, A. Irabien, Towards the
electrochemical conversion of carbon dioxide into methanol,
Green Chem., 17 (2015) 2304–2324.
- M. Gattrell, N. Gupta, A. Co, Electrochemical reduction of
CO2 to hydrocarbons to store renewable electrical energy and
upgrade biogas, Energy Convers. Manage., 48 (2007) 1255–
165.
- C. Oloman, H. Li, Electrochemical processing of carbon dioxide,
Chem. Sus. Chem, 1 (2008) 385–391.
- N.S. Lewis, D.G. Nocera, Powering the planet: Chemical challenges
in solar energy utilization, Proc. Natl. Acad. Sci. USA,
103 (2006) 15729–15735.
- G.A. Olah, A. Goeppert, G.K.S. Prakash, Chemical recycling of
carbon dioxide to methanol and dimethyl ether: from greenhouse
gas to renewable, environmentally carbon neutral fuels
and synthetic hydrocarbons, J. Org. Chem., 74 (2009) 487–498.
- J. Qiao, Y. Liu, F. Hong, J. Zhang, A review of catalysts for the
electroreduction of carbon dioxide to produce low-carbon
fuels, Chem. Soc. Rev., 43 (2014) 631–675.
- R.H. Perry, D.W. Green, Perry’s Chemical Engineers’ Handbook,
McGraw-Hill, New York, 1999.
- M. Spichiger-Ulmann, J. Augustynski, Electrochemical reduction
of bicarbonate ions at a bright palladium cathode, J. Chem.
Soc., Faraday Trans., 81 (1985) 713–716.
- M. Azuma, K. Hashimoto, M. Watanabe, T. Sakata, Electrochemical
reduction of carbon dioxide to higher hydrocarbons
in a KHCO3 aqueous solution, J. Electroanal. Chem., 294 (1990)
299–303.
- S. Nakagawa, A. Kudo, M. Azuma, T. Sakata, Effect of pressure
on the electrochemical reduction of CO2 on Group VIII metal
electrodes, J. Electroanal. Chem., 308 (1991) 339–343.
- K. Ohkawa, K. Hashimoto, A. Fujishima, Y. Noguchi, S.
Nakayama, Electrochemical reduction of carbon dioxide on
hydrogenstoring materials: Part 1. The effect of hydrogen
absorption on the electrochemical behavior on palladium electrodes,
J. Electroanal. Chem., 345 (1993) 445–456.
- K. Ohkawa, Y. Noguchi, S. Nakayama, K. Hashimoto, A.
Fujishima, Electrochemical reduction of carbon dioxide on
hydrogen-storing materials.: Part II. Copper-modified palladium
electrode, J. Electroanal. Chem., 348 (1993) 459–464.
- K. Ohkawa, Y. Noguchi, S. Nakayama, K. Hashimoto, A.
Fujishima, Electrochemical reduction of carbon dioxide on
hydrogen-storing materials: Part 3. The effect of the absorption
of hydrogen on the palladium electrodes modified with
copper, J. Electroanal. Chem., 69 (1994) 165–173.
- B.I. Podlovchenko, E.A. Kolyadko, S. Lu, Electroreduction of
carbon dioxide on palladium electrodes at potentials higher
than the reversible hydrogen potential, J. Electroanal. Chem.,
373 (1994) 185–187.
- D.H. Gibson, The organometallic chemistry of carbon dioxide,
Chem. Rev., 96 (1996) 2063–2096.
- X. Yin, J.R. Moss, Recent developments in the activation of carbon
dioxide by metal complexes, Coord. Chem. Rev., 181 (1999)
27–59.
- H. Taketa, O. Ishitani, Development of efficient photocatalytic
systems for CO2 reduction using mononuclear and multinuclear
metal complexes based on mechanistic studies, Coord.
Chem. Rev., 254 (2010) 346–354.
- T. Inoue, A. Fujishima, S. Konishi, K. Honda, Photoelectrocatalytic
reduction of carbon dioxide in aqueous suspensions of
semiconductor powders, Nature, 277 (1979) 637–638.
- V.P. Indrakanti, J.D. Kubicki, H.H. Schobert, Photoinduced activation
of CO2 on Ti-based heterogeneous catalysts: Current
state, chemical physics-based insights and outlook, Energy
Environ. Sci., 2 (2009) 745–758.
- N.M. Dimitrijevic, B.K. Vijayan, O.G. Poluektov, T. Rajh, K.A.
Gray, H. He, P. Zapol, Role of water and carbonates in photocatalytic
transformation of CO2 to CH4 on titania, J. Am. Chem.
Soc., 133 (2011) 3964–3971.
- M. Anpo, J.M. Thomas, Single-site photocatalytic solids for
the decomposition of undesirable molecules, Chem. Comm.,
(2006) 3273–3278.
- T.V. Nguyen, J.C.S. Wu, C.H. Chiou, Photoreduction of CO2 over
Ruthenium dye-sensitized TiO2-based catalysts under concentrated
natural sunlight, Catal. Commun., 9 (2008) 2073–2076.
- C. Wang, R.L. Thompson, J. Baltrus, C. Matranga, Visible light
photoreduction of CO2 using CdSe/Pt/TiO2 heterostructured
catalysts, J. Phys. Chem. Lett., 1 (2010) 48–53.
- L. Jia, J. Li, W. Fang, H. Song, Q. Li, Y. Tang, Visible-light-induced
photocatalyst based on C-doped LaCoO3 synthesized
by novel microorganism chelate method, Catal. Commun., 10
(2009) 1230–1234.
- P.W. Pan, Y.W. Chen, Photocatalytic reduction of carbon dioxide
on NiO/InTaO4 under visible light irradiation, Catal. Commun.,
8 (2007) 1546–1549.
- J. Pan, X. Wu, L.Z. Wang, G. Liu, G.Q. Lu, H.M. Chen, Synthesis
of anatase TiO2 rods with dominant reactive {010} facets for the
photoreduction of CO2 to CH4 and use in dye-sensitized solar
cells, Chem. Commun., 47 (2011) 8361–8363.
- S. Yan, S. Ouyang, J. Gao, M. Yang, J. Feng, X. Fan, L. Wan, Z. Li,
J.H. Ye, Y. Zhou, Z.G. Zou, A room-temperature reactive-template
route to mesoporous ZnGa2O4 with improved photocatalytic
activity in reduction of CO2, Angew. Chem. Int. Ed., 49
(2010) 6400–6404.
- S. Sato, T. Arai, T. Morikawa, K. Uemura, T.M. Suzuki, H.
Tanaka, T. Kajino, Selective CO2 conversion to formate conjugated
with H2O oxidation utilizing semiconductor/complex
hybrid photocatalysts, J. Am. Chem. Soc., 133 (2011) 15240.
- C. Wang, R.L. Thompson, P. Ohodnicki, J. Baltrus, C. Matranga,
Size-dependent photocatalytic reduction of CO2 with
PbS quantum dot sensitized TiO2 heterostructured photocatalysts,
J. Mater. Chem., 21 (2011) 13452–13457.
- H. Li, Y. Lei, Y. Huang, Y. Fang, Y. Xu, L. Zhu, X. Li, Photocatalytic
reduction of carbon dioxide to methanol by Cu2O/SiC nanocrystallite under visible light irradiation, J. Nat. Gas
Chem., 20 (2011) 145–150.
- H. Shi, T. Wang, J. Chen, C. Zhu, J. Ye, Z. Zou, Photoreduction
of carbon dioxide over NaNbO3 nanostructured photocatalysts,
Catal. Lett., 141 (2011) 525–530.
- Y. Liu, B. Huang, Y. Dai, X. Zhang, X. Qin, M. Jiang, Selective
ethanol formation from photocatalytic reduction of carbon
dioxide in water with BiVO4 photocatalyst, Catal. Commun., 11
(2009) 210–213.
- J. Albo, D. Vallejo, G. Beobide, O. Castillo, P. Castano, A. Irabien,
Copper-based metal–organic porous materials for
CO2 electrocatalytic reduction to alcohols, Chem. Sus. Chem.,
10(6) (2017) 1100–1109.
- P. Castano, Pyridine-based aqueous solutions enhance methanol
electrosynthesis from CO2, J. CO2 Util., 18 (2017) 164–172.