References

  1. P. Heptonstall, A. Lyngfelt, Z. Makuch, E. Mangano, R.T.J. Porter, M. Pourkashanian, G.T. Rochelle, N. Shah, J.G. Yao, P.S. Fenell, Carbon capture and storage update, Energy Environ. Sci., 7 (2014) 130–189.
  2. J. Albo, A. Irabien, Non-dispersive absorption of CO2 in parallel and cross-flow membrane modules using EMISE, J. Chem. Technol. Biot., 87 (2012) 1502–1507.
  3. J. Albo, P. Luis, A. Irabien, Absorption of coal combustion flue gases in ionic liquids using different membrane contactors, Desal. Water Treat., 27(1–3) (2011) 54–59.
  4. D.T. Whipple, P.J.A. Kenis, Prospects of CO2 utilization via direct heterogeneous electrochemical reduction, J. Phys. Chem. Lett., 1 (2010) 3451–3458.
  5. M. Alvarez-Guerra, S. Quintanilla, A. Irabien, Conversion of carbon dioxide into formate using a continuous electrochemical reduction process in a lead cathode, Chem. Eng. J., 207 (2012) 278–284.
  6. J. Albo, M. Alvarez-Guerra, P. Castaño, A. Irabien, Towards the electrochemical conversion of carbon dioxide into methanol, Green Chem., 17 (2015) 2304–2324.
  7. M. Gattrell, N. Gupta, A. Co, Electrochemical reduction of CO2 to hydrocarbons to store renewable electrical energy and upgrade biogas, Energy Convers. Manage., 48 (2007) 1255– 165.
  8. C. Oloman, H. Li, Electrochemical processing of carbon dioxide, Chem. Sus. Chem, 1 (2008) 385–391.
  9. N.S. Lewis, D.G. Nocera, Powering the planet: Chemical challenges in solar energy utilization, Proc. Natl. Acad. Sci. USA, 103 (2006) 15729–15735.
  10. G.A. Olah, A. Goeppert, G.K.S. Prakash, Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons, J. Org. Chem., 74 (2009) 487–498.
  11. J. Qiao, Y. Liu, F. Hong, J. Zhang, A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels, Chem. Soc. Rev., 43 (2014) 631–675.
  12. R.H. Perry, D.W. Green, Perry’s Chemical Engineers’ Handbook, McGraw-Hill, New York, 1999.
  13. M. Spichiger-Ulmann, J. Augustynski, Electrochemical reduction of bicarbonate ions at a bright palladium cathode, J. Chem. Soc., Faraday Trans., 81 (1985) 713–716.
  14. M. Azuma, K. Hashimoto, M. Watanabe, T. Sakata, Electrochemical reduction of carbon dioxide to higher hydrocarbons in a KHCO3 aqueous solution, J. Electroanal. Chem., 294 (1990) 299–303.
  15. S. Nakagawa, A. Kudo, M. Azuma, T. Sakata, Effect of pressure on the electrochemical reduction of CO2 on Group VIII metal electrodes, J. Electroanal. Chem., 308 (1991) 339–343.
  16. K. Ohkawa, K. Hashimoto, A. Fujishima, Y. Noguchi, S. Nakayama, Electrochemical reduction of carbon dioxide on hydrogenstoring materials: Part 1. The effect of hydrogen absorption on the electrochemical behavior on palladium electrodes, J. Electroanal. Chem., 345 (1993) 445–456.
  17. K. Ohkawa, Y. Noguchi, S. Nakayama, K. Hashimoto, A. Fujishima, Electrochemical reduction of carbon dioxide on hydrogen-storing materials.: Part II. Copper-modified palladium electrode, J. Electroanal. Chem., 348 (1993) 459–464.
  18. K. Ohkawa, Y. Noguchi, S. Nakayama, K. Hashimoto, A. Fujishima, Electrochemical reduction of carbon dioxide on hydrogen-storing materials: Part 3. The effect of the absorption of hydrogen on the palladium electrodes modified with copper, J. Electroanal. Chem., 69 (1994) 165–173.
  19. B.I. Podlovchenko, E.A. Kolyadko, S. Lu, Electroreduction of carbon dioxide on palladium electrodes at potentials higher than the reversible hydrogen potential, J. Electroanal. Chem., 373 (1994) 185–187.
  20. D.H. Gibson, The organometallic chemistry of carbon dioxide, Chem. Rev., 96 (1996) 2063–2096.
  21. X. Yin, J.R. Moss, Recent developments in the activation of carbon dioxide by metal complexes, Coord. Chem. Rev., 181 (1999) 27–59.
  22. H. Taketa, O. Ishitani, Development of efficient photocatalytic systems for CO2 reduction using mononuclear and multinuclear metal complexes based on mechanistic studies, Coord. Chem. Rev., 254 (2010) 346–354.
  23. T. Inoue, A. Fujishima, S. Konishi, K. Honda, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders, Nature, 277 (1979) 637–638.
  24. V.P. Indrakanti, J.D. Kubicki, H.H. Schobert, Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook, Energy Environ. Sci., 2 (2009) 745–758.
  25. N.M. Dimitrijevic, B.K. Vijayan, O.G. Poluektov, T. Rajh, K.A. Gray, H. He, P. Zapol, Role of water and carbonates in photocatalytic transformation of CO2 to CH4 on titania, J. Am. Chem. Soc., 133 (2011) 3964–3971.
  26. M. Anpo, J.M. Thomas, Single-site photocatalytic solids for the decomposition of undesirable molecules, Chem. Comm., (2006) 3273–3278.
  27. T.V. Nguyen, J.C.S. Wu, C.H. Chiou, Photoreduction of CO2 over Ruthenium dye-sensitized TiO2-based catalysts under concentrated natural sunlight, Catal. Commun., 9 (2008) 2073–2076.
  28. C. Wang, R.L. Thompson, J. Baltrus, C. Matranga, Visible light photoreduction of CO2 using CdSe/Pt/TiO2 heterostructured catalysts, J. Phys. Chem. Lett., 1 (2010) 48–53.
  29. L. Jia, J. Li, W. Fang, H. Song, Q. Li, Y. Tang, Visible-light-induced photocatalyst based on C-doped LaCoO3 synthesized by novel microorganism chelate method, Catal. Commun., 10 (2009) 1230–1234.
  30. P.W. Pan, Y.W. Chen, Photocatalytic reduction of carbon dioxide on NiO/InTaO4 under visible light irradiation, Catal. Commun., 8 (2007) 1546–1549.
  31. J. Pan, X. Wu, L.Z. Wang, G. Liu, G.Q. Lu, H.M. Chen, Synthesis of anatase TiO2 rods with dominant reactive {010} facets for the photoreduction of CO2 to CH4 and use in dye-sensitized solar cells, Chem. Commun., 47 (2011) 8361–8363.
  32. S. Yan, S. Ouyang, J. Gao, M. Yang, J. Feng, X. Fan, L. Wan, Z. Li, J.H. Ye, Y. Zhou, Z.G. Zou, A room-temperature reactive-template route to mesoporous ZnGa2O4 with improved photocatalytic activity in reduction of CO2, Angew. Chem. Int. Ed., 49 (2010) 6400–6404.
  33. S. Sato, T. Arai, T. Morikawa, K. Uemura, T.M. Suzuki, H. Tanaka, T. Kajino, Selective CO2 conversion to formate conjugated with H2O oxidation utilizing semiconductor/complex hybrid photocatalysts, J. Am. Chem. Soc., 133 (2011) 15240.
  34. C. Wang, R.L. Thompson, P. Ohodnicki, J. Baltrus, C. Matranga, Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts, J. Mater. Chem., 21 (2011) 13452–13457.
  35. H. Li, Y. Lei, Y. Huang, Y. Fang, Y. Xu, L. Zhu, X. Li, Photocatalytic reduction of carbon dioxide to methanol by Cu2O/SiC nanocrystallite under visible light irradiation, J. Nat. Gas Chem., 20 (2011) 145–150.
  36. H. Shi, T. Wang, J. Chen, C. Zhu, J. Ye, Z. Zou, Photoreduction of carbon dioxide over NaNbO3 nanostructured photocatalysts, Catal. Lett., 141 (2011) 525–530.
  37. Y. Liu, B. Huang, Y. Dai, X. Zhang, X. Qin, M. Jiang, Selective ethanol formation from photocatalytic reduction of carbon dioxide in water with BiVO4 photocatalyst, Catal. Commun., 11 (2009) 210–213.
  38. J. Albo, D. Vallejo, G. Beobide, O. Castillo, P. Castano, A. Irabien, Copper-based metal–organic porous materials for CO2 electrocatalytic reduction to alcohols, Chem. Sus. Chem., 10(6) (2017) 1100–1109.
  39. P. Castano, Pyridine-based aqueous solutions enhance methanol electrosynthesis from CO2, J. CO2 Util., 18 (2017) 164–172.