References

  1. M. Rezakazemi, A. Khajeh, M. Mesbah, Membrane filtration of wastewater from gas and oil production, Environ. Chem. Lett., (2017) 1–22.
  2. A. Azimi, A. Azari, M. Rezakazemi, M. Ansarpour, Removal of heavy metals from industrial wastewaters: a review, Chem- BioEng. Rev., 4 (2017) 37–59.
  3. M. Rezakazemi, A. Ghafarinazari, S. Shirazian, A. Khoshsima, Numerical modeling and optimization of wastewater treatment using porous polymeric membranes, Polym. Eng. Sci., 53 (2013) 1272–1278.
  4. S. Shirazian, M. Rezakazemi, A. Marjani, S. Moradi, Hydrodynamics and mass transfer simulation of wastewater treatment in membrane reactors, Desalination, 286 (2012) 290–295.
  5. T. Mohammadi, M. Maghami, M. Rezakazemi, High loaded synthetic hazardous wastewater treatment using lab-scale submerged ceramic membrane bioreactor, Periodica Polytech. Chem. Eng., (2017) 1–6.
  6. M. Rezakazemi, S. Shirazian, S.N. Ashrafizadeh, Simulation of ammonia removal from industrial wastewater streams by means of a hollow-fiber membrane contactor, Desalination, 285 (2012) 383–392.
  7. M. Rezakazemi, M. Sadrzadeh, T. Mohammadi, In: R. Wilson, A.K.S.S.C. George, Transport Properties of Polymeric Membranes, Elsevier, Amsterdam, (2018) 243–263.
  8. M. Rezakazemi, K. Shahidi, T. Mohammadi, Synthetic PDMS composite membranes for pervaporation dehydration of ethanol, Desal. Water Treat., 54 (2014) 1–8.
  9. B. Baheri, M. Shahverdi, M. Rezakazemi, E. Motaee, T. Mohammadi, Performance of PVA/NaA mixed matrix membrane for removal of water from ethylene glycol solutions by pervaporation, Chem. Eng. Commun., 202 (2014) 316–321.
  10. M. Shahverdi, B. Baheri, M. Rezakazemi, E. Motaee, T. Mohammadi, Pervaporation study of ethylene glycol dehydration through synthesized (PVA-4A)/polypropylene mixed matrix composite membranes, Polym. Eng. Sci., 53 (2013) 1487-1493.
  11. M. Rezakazemi, M. Iravaninia, S. Shirazian, T. Mohammadi, Transient computational fluid dynamics modeling of pervaporation separation of aromatic/aliphatic hydrocarbon mixtures using polymer composite membrane, Polym. Eng. Sci., 53 (2013) 1494–1501.
  12. M. Rezakazemi, M. Shahverdi, S. Shirazian, T. Mohammadi, A. Pak, CFD simulation of water removal from water/ethylene glycol mixtures by pervaporation, Chem. Eng. J., 168 (2011) 60–67.
  13. A. Dashti, M. Asghari, Recent progresses in ceramic hollow-fiber membranes, Chem. Bio. Eng. Rev., 2 (2015) 54–70.
  14. M. Rezakazemi, A. Dashti, M. Asghari, S. Shirazian, H2-selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS, Intl. J. Hydrogen Energy, 42 (2017) 15211–15225.
  15. V. Zargar, M. Asghari, A. Dashti, A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications, Chem. Bio. Eng. Rev., 2 (2015) 204–226.
  16. R. Singh, Production of high-purity water by membrane processes, Desal. Water Treat., 3 (2009) 99–110.
  17. B. Van der Bruggen, M. Mänttäri, M. Nyström, Drawbacks of applying nanofiltration and how to avoid them: A review, Sep. Purif. Technol., 63 (2008) 251–263.
  18. J. Schaep, C. Vandecasteele, Evaluating the charge of nanofiltration membranes, J. Membr, Sci., 188 (2001) 129–136.
  19. Q. Zhang, H. Wang, S. Zhang, L. Dai, Positively charged nanofiltration membrane based on cardo poly (arylene ether sulfone) with pendant tertiary amine groups, J. Membr. Sci., 375 (2011) 191–197.
  20. X.L. Wang, T. Tsuru, M. Togoh, S.I. Nakao, S. Kimura, Transport of organic electrolytes with electrostatic and steric-hindrance effects through nanofiltration membranes, J. Chem. Eng. Japan., 28 (1995) 372–380.
  21. W.R. Bowen, A.W. Mohammad, N. Hilal, Characterisation of nanofiltration membranes for predictive purposes – use of salts, uncharged solutes and atomic force microscopy, J. Membr. Sci., 126 (1997) 91–105.
  22. W.R. Bowen, H. Mukhtar, Characterisation and prediction of separation performance of nanofiltration membranes, J. Membr. Sci., 112 (1996) 263–274.
  23. A. Szymczyk, Y. Lanteri, P. Fievet, Modelling the transport of asymmetric electrolytes through nanofiltration membranes, Desalination, 245 (2009) 396–407.
  24. C. Labbez, P. Fievet, F. Thomas, A. Szymczyk, A. Vidonne, A. Foissy, P. Pagetti, Evaluation of the “DSPM” model on a titania membrane: measurements of charged and uncharged solute retention, electrokinetic charge, pore size, and water permeability, J. Colloid. Interface Sci., 262 (2003) 200–211.
  25. S. Bandini, D. Vezzani, Nanofiltration modeling: the role of dielectric exclusion in membrane characterization, Chem. Eng. Sci., 58 (2003) 3303–3326.
  26. H. Al-Zoubi, N. Hilal, N.A. Darwish, A.W. Mohammad, Rejection and modelling of sulphate and potassium salts by nanofiltration membranes: neural network and Spiegler–Kedem model, Desalination, 206 (2007) 42–60.
  27. M. Rostamizadeh, M. Rezakazemi, K. Shahidi, T. Mohammadi, Gas permeation through H2-selective mixed matrix membranes: Experimental and neural network modeling, Int. J. Hydrogen Energy, 38 (2013) 1128–1135.
  28. M. Rezakazemi, T. Mohammadi, Gas sorption in H2-selective mixed matrix membranes: Experimental and neural network modeling, Int. J. Hydrogen Energy, 38 (2013) 14035–14041.
  29. M. Rezakazemi, S. Razavi, T. Mohammadi, A.G. Nazari, Simulation and determination of optimum conditions of pervaporative dehydration of isopropanol process using synthesized PVA–APTEOS/TEOS nanocomposite membranes by means of expert systems, J. Membr. Sci., 379 (2011) 224–232.
  30. N. Azizi, M. Rezakazemi, M.M. Zarei, An intelligent approach to predict gas compressibility factor using neural network model, Neural Comput. Applications, (2017) 1–10.
  31. W. Richard Bowen, M.G. Jones, H.N.S. Yousef, Prediction of the rate of crossflow membrane ultrafiltration of colloids: A neural network approach, Chem. Eng. Sci., 53 (1998) 3793–3802.
  32. N.A. Darwish, N. Hilal, H. Al-Zoubi, A.W. Mohammad, Neural networks simulation of the filtration of sodium chloride and magnesium chloride solutions using nanofiltration membranes, Chem. Eng. Res. Des., 85 (2007) 417–430.
  33. T.M. Lee, H. Oh, Y.K. Choung, S. Oh, M. Jeon, J.H. Kim, S.H. Nam, S. Lee, Prediction of membrane fouling in the pilot-scale microfiltration system using genetic programming, Desalination, 247 (2009) 285–294.
  34. A. Okhovat, S.M. Mousavi, Modeling of arsenic, chromium and cadmium removal by nanofiltration process using genetic programming, Appl. Soft Comput., 12 (2012) 793–799.
  35. R. Du, J. Zhao, Properties of poly (N, N-dimethylaminoethyl methacrylate)/polysulfone positively charged composite nanofiltration membrane, J. Membr. Sci., 239 (2004) 183–188.
  36. Y.C. Chiang, Y.Z. Hsub, R.C. Ruaan, C.J. Chuang, K.L. Tung, Nanofiltration membranes synthesized from hyperbranched polyethyleneimine, J. Membr. Sci., 326 (2009) 19–26.
  37. A. Akbari, H. Solymani, S.M.M. Rostami, Preparation and characterization of a novel positively charged nanofiltration membrane based on polysulfone, J. Applied. Polym. Sci., 132 (2015).
  38. S. Bila, Y. Harkouss, M. Ibrahim, J. Rousset, E. N’Goya, D. Baillargeat, S. Verdeyme, M. Aubourg, P. Guillon, An accurate wavelet neural-network-based model for electromagnetic optimization of microwave circuits, Intl. J. RF Microwave Computer-Aided Eng., 9 (1999) 297–306.
  39. M. Kimura, R. Nakano, Dynamical systems produced by recurrent neural networks, Syst. Comput. Japan, 31 (2000) 77–86.
  40. M. Khayet, C. Cojocaru, M. Essalhi, Artificial neural network modeling and response surface methodology of desalination by reverse osmosis, J. Membr. Sci., 368 (2011) 202–214.
  41. C. Cojocaru, M. Macoveanu, I. Cretescu, Peat-based sorbents for the removal of oil spills from water surface: Application of artificial neural network modeling, Colloids Surfaces A: Physicochem. Eng. Asp., 384 (2011) 675–684.
  42. M. Khayet, C. Cojocaru, M. Essalhi, Artificial neural network modeling and response surface methodology of desalination by reverse osmosis, J. Membr. Sci., 368 (2011) 202–214.
  43. E. Soroush, S. Shahsavari, M. Mesbah, M. Rezakazemi, Z. Zhang, A robust predictive tool for estimating CO2 solubility in potassium based amino acid salt solutions, Chin. J. Chem. Eng., (2017).
  44. R. Foroutan, H. Esmaeili, M. Abbasi, M. Rezakazemi, M. Mesbah, Adsorption behavior of Cu(II) and Co(II) using chemically modified marine algae, Environ. Technol., (2017) 1–9.
  45. M. Mesbah, E. Soroush, M. Rezakazemi, Development of a least squares support vector machine model for prediction of natural gas hydrate formation temperature, Chin. J. Chem. Eng., 25 (2017) 1238–1248.
  46. J.R. Koza, Genetic Programming, The MIT Press, Cambridge MA, USA (1992).
  47. B. Grosman, D.R. Lewin, Automated nonlinear model predictive control using genetic programming, Comput. Chem. Eng., 26 (2002) 631–640.
  48. M. Rezakazemi, A. Dashti, M. Asghari, S. Shirazian, H2-selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS, Int. J. Hydrogen Energy, 42 (2017) 15211–15225.
  49. X.H. Wang, Y.G. Li, Y.D. Hu, Y.L. Wang, Synthesis of heat-integrated complex distillation systems via Genetic Programming, Comput. Chem. Eng., 32 (2008) 1908–1917.
  50. W. Yuan, A. Odjo, N.E. Sammons, J. Caballero, M.R. Eden, Process structure optimization using a hybrid disjunctive-genetic programming approach, Comput. Aided Chem. Eng., 27 (2009) 669–674.
  51. A. Das, M. Abdel-Aty, A genetic programming approach to explore the crash severity on multi-lane roads, Accid. Analysis & Prevention, 42 (2010) 548–557.
  52. H. Demuth, M. Beale, Neural network toolbox for use with MATLAB, Mathworks, Massachusetts, (1993).
  53. A. Khataee, M. Kasiri, Artificial neural networks modeling of contaminated water treatment processes by homogeneous and heterogeneous nanocatalysis, J. Mol. Catal. A: Chem., 331 (2010) 86–100.