References
- M. Rezakazemi, A. Khajeh, M. Mesbah, Membrane filtration of
wastewater from gas and oil production, Environ. Chem. Lett.,
(2017) 1–22.
- A. Azimi, A. Azari, M. Rezakazemi, M. Ansarpour, Removal
of heavy metals from industrial wastewaters: a review, Chem-
BioEng. Rev., 4 (2017) 37–59.
- M. Rezakazemi, A. Ghafarinazari, S. Shirazian, A. Khoshsima,
Numerical modeling and optimization of wastewater treatment
using porous polymeric membranes, Polym. Eng. Sci., 53
(2013) 1272–1278.
- S. Shirazian, M. Rezakazemi, A. Marjani, S. Moradi, Hydrodynamics
and mass transfer simulation of wastewater treatment
in membrane reactors, Desalination, 286 (2012) 290–295.
- T. Mohammadi, M. Maghami, M. Rezakazemi, High loaded
synthetic hazardous wastewater treatment using lab-scale
submerged ceramic membrane bioreactor, Periodica Polytech.
Chem. Eng., (2017) 1–6.
- M. Rezakazemi, S. Shirazian, S.N. Ashrafizadeh, Simulation
of ammonia removal from industrial wastewater streams by
means of a hollow-fiber membrane contactor, Desalination,
285 (2012) 383–392.
- M. Rezakazemi, M. Sadrzadeh, T. Mohammadi, In: R. Wilson,
A.K.S.S.C. George, Transport Properties of Polymeric Membranes,
Elsevier, Amsterdam, (2018) 243–263.
- M. Rezakazemi, K. Shahidi, T. Mohammadi, Synthetic PDMS
composite membranes for pervaporation dehydration of ethanol,
Desal. Water Treat., 54 (2014) 1–8.
- B. Baheri, M. Shahverdi, M. Rezakazemi, E. Motaee, T. Mohammadi,
Performance of PVA/NaA mixed matrix membrane for
removal of water from ethylene glycol solutions by pervaporation,
Chem. Eng. Commun., 202 (2014) 316–321.
- M. Shahverdi, B. Baheri, M. Rezakazemi, E. Motaee, T. Mohammadi,
Pervaporation study of ethylene glycol dehydration
through synthesized (PVA-4A)/polypropylene mixed matrix
composite membranes, Polym. Eng. Sci., 53 (2013) 1487-1493.
- M. Rezakazemi, M. Iravaninia, S. Shirazian, T. Mohammadi,
Transient computational fluid dynamics modeling of pervaporation
separation of aromatic/aliphatic hydrocarbon mixtures
using polymer composite membrane, Polym. Eng. Sci., 53
(2013) 1494–1501.
- M. Rezakazemi, M. Shahverdi, S. Shirazian, T. Mohammadi, A.
Pak, CFD simulation of water removal from water/ethylene glycol
mixtures by pervaporation, Chem. Eng. J., 168 (2011) 60–67.
- A. Dashti, M. Asghari, Recent progresses in ceramic hollow-fiber
membranes, Chem. Bio. Eng. Rev., 2 (2015) 54–70.
- M. Rezakazemi, A. Dashti, M. Asghari, S. Shirazian, H2-selective
mixed matrix membranes modeling using ANFIS,
PSO-ANFIS, GA-ANFIS, Intl. J. Hydrogen Energy, 42 (2017)
15211–15225.
- V. Zargar, M. Asghari, A. Dashti, A review on chitin and chitosan
polymers: structure, chemistry, solubility, derivatives,
and applications, Chem. Bio. Eng. Rev., 2 (2015) 204–226.
- R. Singh, Production of high-purity water by membrane processes,
Desal. Water Treat., 3 (2009) 99–110.
- B. Van der Bruggen, M. Mänttäri, M. Nyström, Drawbacks of
applying nanofiltration and how to avoid them: A review, Sep.
Purif. Technol., 63 (2008) 251–263.
- J. Schaep, C. Vandecasteele, Evaluating the charge of nanofiltration
membranes, J. Membr, Sci., 188 (2001) 129–136.
- Q. Zhang, H. Wang, S. Zhang, L. Dai, Positively charged nanofiltration
membrane based on cardo poly (arylene ether sulfone)
with pendant tertiary amine groups, J. Membr. Sci., 375
(2011) 191–197.
- X.L. Wang, T. Tsuru, M. Togoh, S.I. Nakao, S. Kimura, Transport
of organic electrolytes with electrostatic and steric-hindrance
effects through nanofiltration membranes, J. Chem.
Eng. Japan., 28 (1995) 372–380.
- W.R. Bowen, A.W. Mohammad, N. Hilal, Characterisation
of nanofiltration membranes for predictive purposes – use
of salts, uncharged solutes and atomic force microscopy, J.
Membr. Sci., 126 (1997) 91–105.
- W.R. Bowen, H. Mukhtar, Characterisation and prediction
of separation performance of nanofiltration membranes, J.
Membr. Sci., 112 (1996) 263–274.
- A. Szymczyk, Y. Lanteri, P. Fievet, Modelling the transport of
asymmetric electrolytes through nanofiltration membranes,
Desalination, 245 (2009) 396–407.
- C. Labbez, P. Fievet, F. Thomas, A. Szymczyk, A. Vidonne, A.
Foissy, P. Pagetti, Evaluation of the “DSPM” model on a titania
membrane: measurements of charged and uncharged solute
retention, electrokinetic charge, pore size, and water permeability,
J. Colloid. Interface Sci., 262 (2003) 200–211.
- S. Bandini, D. Vezzani, Nanofiltration modeling: the role of
dielectric exclusion in membrane characterization, Chem. Eng.
Sci., 58 (2003) 3303–3326.
- H. Al-Zoubi, N. Hilal, N.A. Darwish, A.W. Mohammad, Rejection
and modelling of sulphate and potassium salts by nanofiltration
membranes: neural network and Spiegler–Kedem
model, Desalination, 206 (2007) 42–60.
- M. Rostamizadeh, M. Rezakazemi, K. Shahidi, T. Mohammadi,
Gas permeation through H2-selective mixed matrix
membranes: Experimental and neural network modeling, Int.
J. Hydrogen Energy, 38 (2013) 1128–1135.
- M. Rezakazemi, T. Mohammadi, Gas sorption in H2-selective
mixed matrix membranes: Experimental and neural network
modeling, Int. J. Hydrogen Energy, 38 (2013) 14035–14041.
- M. Rezakazemi, S. Razavi, T. Mohammadi, A.G. Nazari, Simulation
and determination of optimum conditions of pervaporative
dehydration of isopropanol process using synthesized
PVA–APTEOS/TEOS nanocomposite membranes by means of
expert systems, J. Membr. Sci., 379 (2011) 224–232.
- N. Azizi, M. Rezakazemi, M.M. Zarei, An intelligent approach
to predict gas compressibility factor using neural network
model, Neural Comput. Applications, (2017) 1–10.
- W. Richard Bowen, M.G. Jones, H.N.S. Yousef, Prediction of the
rate of crossflow membrane ultrafiltration of colloids: A neural
network approach, Chem. Eng. Sci., 53 (1998) 3793–3802.
- N.A. Darwish, N. Hilal, H. Al-Zoubi, A.W. Mohammad, Neural
networks simulation of the filtration of sodium chloride
and magnesium chloride solutions using nanofiltration membranes,
Chem. Eng. Res. Des., 85 (2007) 417–430.
- T.M. Lee, H. Oh, Y.K. Choung, S. Oh, M. Jeon, J.H. Kim, S.H.
Nam, S. Lee, Prediction of membrane fouling in the pilot-scale
microfiltration system using genetic programming, Desalination,
247 (2009) 285–294.
- A. Okhovat, S.M. Mousavi, Modeling of arsenic, chromium
and cadmium removal by nanofiltration process using genetic
programming, Appl. Soft Comput., 12 (2012) 793–799.
- R. Du, J. Zhao, Properties of poly (N, N-dimethylaminoethyl
methacrylate)/polysulfone positively charged composite
nanofiltration membrane, J. Membr. Sci., 239 (2004) 183–188.
- Y.C. Chiang, Y.Z. Hsub, R.C. Ruaan, C.J. Chuang, K.L. Tung,
Nanofiltration membranes synthesized from hyperbranched
polyethyleneimine, J. Membr. Sci., 326 (2009) 19–26.
- A. Akbari, H. Solymani, S.M.M. Rostami, Preparation and
characterization of a novel positively charged nanofiltration
membrane based on polysulfone, J. Applied. Polym. Sci., 132
(2015).
- S. Bila, Y. Harkouss, M. Ibrahim, J. Rousset, E. N’Goya, D.
Baillargeat, S. Verdeyme, M. Aubourg, P. Guillon, An accurate
wavelet neural-network-based model for electromagnetic
optimization of microwave circuits, Intl. J. RF Microwave
Computer-Aided Eng., 9 (1999) 297–306.
- M. Kimura, R. Nakano, Dynamical systems produced by recurrent
neural networks, Syst. Comput. Japan, 31 (2000) 77–86.
- M. Khayet, C. Cojocaru, M. Essalhi, Artificial neural network
modeling and response surface methodology of desalination
by reverse osmosis, J. Membr. Sci., 368 (2011) 202–214.
- C. Cojocaru, M. Macoveanu, I. Cretescu, Peat-based sorbents
for the removal of oil spills from water surface: Application of
artificial neural network modeling, Colloids Surfaces A: Physicochem.
Eng. Asp., 384 (2011) 675–684.
- M. Khayet, C. Cojocaru, M. Essalhi, Artificial neural network
modeling and response surface methodology of desalination
by reverse osmosis, J. Membr. Sci., 368 (2011) 202–214.
- E. Soroush, S. Shahsavari, M. Mesbah, M. Rezakazemi, Z.
Zhang, A robust predictive tool for estimating CO2 solubility
in potassium based amino acid salt solutions, Chin. J. Chem.
Eng., (2017).
- R. Foroutan, H. Esmaeili, M. Abbasi, M. Rezakazemi, M. Mesbah,
Adsorption behavior of Cu(II) and Co(II) using chemically
modified marine algae, Environ. Technol., (2017) 1–9.
- M. Mesbah, E. Soroush, M. Rezakazemi, Development of a
least squares support vector machine model for prediction
of natural gas hydrate formation temperature, Chin. J. Chem.
Eng., 25 (2017) 1238–1248.
- J.R. Koza, Genetic Programming, The MIT Press, Cambridge
MA, USA (1992).
- B. Grosman, D.R. Lewin, Automated nonlinear model predictive
control using genetic programming, Comput. Chem. Eng.,
26 (2002) 631–640.
- M. Rezakazemi, A. Dashti, M. Asghari, S. Shirazian, H2-selective mixed matrix membranes modeling using ANFIS,
PSO-ANFIS, GA-ANFIS, Int. J. Hydrogen Energy, 42 (2017)
15211–15225.
- X.H. Wang, Y.G. Li, Y.D. Hu, Y.L. Wang, Synthesis of heat-integrated
complex distillation systems via Genetic Programming,
Comput. Chem. Eng., 32 (2008) 1908–1917.
- W. Yuan, A. Odjo, N.E. Sammons, J. Caballero, M.R. Eden, Process
structure optimization using a hybrid disjunctive-genetic
programming approach, Comput. Aided Chem. Eng., 27 (2009)
669–674.
- A. Das, M. Abdel-Aty, A genetic programming approach to
explore the crash severity on multi-lane roads, Accid. Analysis
& Prevention, 42 (2010) 548–557.
- H. Demuth, M. Beale, Neural network toolbox for use with
MATLAB, Mathworks, Massachusetts, (1993).
- A. Khataee, M. Kasiri, Artificial neural networks modeling
of contaminated water treatment processes by homogeneous
and heterogeneous nanocatalysis, J. Mol. Catal. A: Chem., 331
(2010) 86–100.