References
- R.P. Feynman (1961) In: Gilbert DH (ed) Minaturization. Reinhold,
New York, pp 282–296.
- Q. Ouyang, P.D. Kaplan, S. Liu, A. Libchaber, DNA solution of
the maximal clique problem, Science, 278(3) (1997) 446–449.
- L.M. Adleman, Molecular computation of solutions to combinatorial
problems, Science, 266(5187) (1994) 1021–1024.
- R.J. Lipton, DNA Solution of hard computational problems,
Science, 268 (5210) (1995) 542–545.
- S. Roweis, E. Winfree, R. Burgoyne, N.V Chelyapov, M.F. Goodman,
P.W.K. Rothemund, L.M. Adleman, A sticker based model
for DNA computation, J. Comput. Biol., 5(4) (1998) 615–629.
- J.F. Ren, Y.Z. Zhang, G. Sun, The np-hardness of minimizing
the total late work on an unbounded batch machine, Asia Pac.
J. Oper. Res., 26(03) (2009) 351–363.
- E. Winfree, F. Liu, L.A. Wenzler, N.C. Seeman, Design and
self-assembly of two dimensional DNA crystals, Nature, 394
(1998) 539–544.
- K. Sakamoto, H. Gouzu, K. Komiya, D. Kiga, S. Yokoyama, T.
Yokomori, M. Hagiya, Molecular computation by DNA hairpin
formation, Science, 288 (2000) 1223–1226.
- D.M. Xiao, W.X. Li, Z.Z. Zhang, L. He, Solving maximum cut
problems in the Adleman-Lipton model, BioSystems, 82 (2005)
203–207.
- W.X. Li, D.M. Xiao, L. He, DNA ternary addition, Appl. Math.
Comput., 182 (2006) 977–986.
- D.M. Xiao, W.X. Li, J. Yu, X.D. Zhang, Z.Z. Zhang, L. He, Procedures
for a dynamical system on f0; 1gn with DNA molecules,
BioSystems., 84 (2006) 207–216.
- W.L. Chang, Fast parallel DNA-based algorithms for molecular
computation: the set-partition problem, IEEE Trans. Nano
biosci., 6 (2007) 346–353.
- Z. Wang, D. Huang, H. Meng, C. Tang, A new fast algorithm
for solving the minimum spanning tree problem based on
DNA molecules computation, Biosystems, 114(1) (2013) 1–7.
- M.Y. Guo, W.L. Chang, M. Ho, J. Lu, J.N. Cao, Is optimal solution
of every NP-complete or NP-hard problem determined
from its characteristic for DNA-based computing, BioSystems,
80 (2005) 71–82.
- W.L. Chang, K.W. Lin, J.C. Chen, C.C. Wang, L.C. Liu, M. Guo,
Molecular solutions of the RSA public-key cryptosystem on a
DNA-based computer, J. Super Comput., 61 (2012) 642–672.
- Z. Wang, J. Pu, L. Cao, J. Tan, A parallel biological optimization
algorithm to solve the unbalanced assignment problem based
on DNA molecular computing, Int. J. Mol Sci., 16(10) (2015)
25338–25352.
- Z.C. Wang, J. Tan, D.M. Huang, Y.C. Ren, Z.W. Ji, A biological
algorithm to solve the assignment problem based on DNA molecules
computation, Appl. Math Comput., 244 (2014) 183–190.
- Z. Wang, D. Huang, J. Tan, T. Liu, K. Zhao, L. Li, A parallel
algorithm for solving the n-queens problem based on inspired
computational model, Biosystems, 131(5) (2015) 22–29.
- X.C. Liu, X.F. Yang, S.L. Li, Y. Ding, Solving the minimum
bisection problem using a biologically inspired computational
model, Theor. Comput. Sci., 411 (2010) 888–896.
- Z.C. Wang, Y.M. Zhang, W.H. Zhou, H.F. Liu, Solving traveling
salesman problem in the Adleman-Lipton model, Appl. Math
Comput., 219 (2012) 2267–2270.
- C. Wang, J. Zhou, X. Xu, Saddle points theory of two classes
of augmented Lagrangians and its applications to generalized
semi-infinite programming, Appl. Math Opt., 59(3) (2009) 413–
434.
- M.R. Garey, D.S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-completeness., W. H. Freeman and
Company, 1979.
- M. Yamamura, Y. Hiroto, T. Matoba, Solutions of shortest path
problems by concentration control, Lecture Notes Computer
Science, 2340 (2002) 231–240.
- H. Zhang, Y. Wang, A new CQ method for solving split feasibility
problem, Front Math China, 5(1) (2010) 37–46.
- R.B.A. Bakar, J. Watada, W. Pedrycz, DNA approach to solve
clustering problem based on a mutual order, Biosystems, 91
(2008) 1–12.
- Z. Wang, Z. Ji, Z. Su, X. Wang, K. Zhao, Solving the maximal
matching problem with DNA molecules in Adleman-Lipton
model, Int. J. Biomath., 9(02) (2016) 1650019.
- H.Y. Zhang, X.Y. Liu, A CLIQUE algorithm using DNA computing
techniques based on closed-circle DNA sequences, Biosystems,
105 (2011) 73–82.
- L. Qi, X. Tong, Y. Wang, Computing power system parameters
to maximize the small signal stability margin based on minmax
models, Optim Eng., 10(4) (2009) 465–476.
- G. Wang, X.X. Huang, J. Zhang, Levitin-Polyak well-posedness
in generalized equilibrium problems with functional constraints,
Pac. J. Optim., 6(2) (2010) 441–453.
- R.S. Braich, C. Johnson, P.W.K. Rothemund, N. Chelyapov, L.M.
Adleman, Solution of a 20-variable 3-SAT problem on a DNA
computer, Science, 296 (2002) 499–502.
- Z. Wang, Z. Ji, X. Wang, et al. A new parallel DNA algorithm to
solve the task scheduling problem based on inspired computational
model, Biosystems, 162 (2017) 59–65.
- H. Chen, Y. Wang, A Family of higher-order convergent iterative
methods for computing the Moore–Penrose inverse, Appl.
Math Comput., 218(8) (2011) 4012–4016.
- C.P. Wei, P. Wang, Y.Z. Zhang, Entropy similarity measure of
interval-valued in tuition is tic fuzzy sets and their applications,
Inform Sciences, 181(19) (2011) 4273–4286.
- C. Miao, Y. Zhang, Z. Cao, Bounded parallel-batch scheduling
on single and multi machines for deteriorating jobs, Inform.
Process Lett., 111(16) (2011) 798–803.
- G. Wang, Levitin–Polyak Well-Posedness for optimization
problems with generalized equilibrium constraints, J. Optimiz
Theory App., 153(1) (2012) 27–41.
- W. Liu, C. Wang, A smoothing Levenberg–Marquardt method
for generalized semi-infinite programming, Comput. Appl.
Math, 32(1) (2013) 89–105.
- N. Zhao, C. Wei, Z. Xu, Sensitivity analysis of multiple criteria
decision making method based on the OWA operator, Int. J.
Intell. Syst, 28(11) (2013) 1124–1139.
- Q. Liu, A. Liu, Block SOR methods for the solution of indefinite
least squares problems, Calcolo., 51(3) (2014) 367–379.
- B. Liu, B. Qu, N. Zheng, A successive projection algorithm
for solving the multiple-sets split feasibility problem, Numer.
Func. Anal Opt., 35(11) (2014) 1459–1466.
- J. Ren, G. Sun, Y. Zhang, The supplying chain scheduling with
outsourcing and transportation, Asia Pac. J. Oper. Res., 34(2)
(2017) 1750009.
- B. Wang, A. Iserles, X. Wu, Arbitrary-order trigonometric fourier
collocation methods for multi-frequency oscillatory systems,
Found Comput Math., 16(1) (2016) 151–181.