References

  1. J. Šumná, M. Kohút, K. Kozáková, Trends in Sludge Treatment from Municipal Wastewater Treatment (Trendy nakladania s kalmi z čištěnia komunálných odpadových vod), Waste Water Conference 2016, 21–24 June, Štrbské pleso, Slovakia, 2017.
  2. A.G. Capodaglio, A. Callegari, D. Dondi, Microwave-induced pyrolysis for production of sustainable biodiesel from waste sludges, Waste Biomass Valor., 7 (2016) 703–709.
  3. P.A. Brownsort, Biomass Pyrolysis Processes: Review of Scope, Control and Variability, UKBRC Working Paper 5, 2009.
  4. Decree of the Ministry of the Environment 437/2016 Coll., Czech Republic. 437 Decree of 19 December 2016 on the conditions for the use of treated sludge on agricultural land and amending Decree No. 383/2001 Coll., On details of waste management and amending Decree No. 341/2008 Coll., On details of the treatment of biodegradable waste and amending Decree No. 294/2005 Coll., on the conditions of landfilling of waste and its use on the surface of the land and amending Decree No. 383/2001 Coll., on the details of waste management.
  5. X. Liu, Y. Wang, C. Gui, P. Li, J. Zhang, H. Zhong, Y. Wei, Chemical forms and risk assessment of heavy metals in sludgebiochar produced by microwave-inducted pyrolysis, RSC Adv., 6 (2016) 101960–101967.
  6. R.C. Kistler, F. Widmer, P.H. Brunner, Behavior of chromium, nickel, copper, zinc, cadmium, mercury and lead during pyrolysis of sewage sludge, Environ. Sci. Technol., 21 (1987) 704 -708.
  7. S. Di Fraia, N. Massarotti, L. Vanoli, M. Costa, Thermoeconomic analysis of a novel cogeneration system for sewage sludge treatment, Energy, 115 (2016) 1560–1571.
  8. T. Liu, B. Liu, W. Zhang, Nutrients and heavy metals in biochar produced by sewage sludge pyrolysis: its application in soil amendment, Pol. J. Environ. Stud., 23 (2014) 271–275.
  9. K. Wang, Y. Zheng, X. Zhu, C.E. Brewer, E.R.C. Brown, Ex-situ catalytic pyrolysis of wastewater sewage sludge – a micropyrolysis study, Bioresour. Technol., 232 (2017) 229–234.
  10. E. Agrafioti, G. Bouras, D. Kalderis, E. Diamadopoulos, Biochar production by sewage sludge pyrolysis, J. Anal. Appl. Pyrolysis, 101 (2013) 72–78.
  11. G. Gascó, C.G. Blanco, F. Guerrero, A.M. Méndez Lázaro, The influence of organic matter on sewage sludge pyrolysis, J. Anal. Appl. Pyrolysis, 74 (2005) 413–420.
  12. H. Lu, W. Zhang, S. Wang, L. Zhuang, Y. Yang, R. Qiu, Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures, J. Anal. Appl. Pyrolysis, 102 (2013) 137–143.
  13. M.E. Sanchez, J.A. Menéndez, A. Dominguez, Effect of pyrolysis temperature on the composition of the oils obtained from sewage sludge, Biomass Bioenergy, 33 (2009) 933–940.
  14. I. Fonts, G. Gea, M. Azuara, J. Abrego, J. Arauzo, Sewage sludge pyrolysis for liquid production: a review, Renew. Sustain. Energy Rev., 16 (2012) 2781–2805.
  15. A.G. Capodaglio, A. Callegari, Feedstock and process influence on biodiesel produced from waste sewage sludge, J. Environ. Manage., 216 (2018) 176–182.
  16. J.A. Menéndez, M. Inguanzo, J.J. Pís, Microwave-induced pyrolysis of sewage sludge, Water Res., 36 (2002) 3261–3264.
  17. Y. Yu, J. Yu, B. Sun, Z. Yan, Influence of catalyst types on the microwave-induced pyrolysis of sewage sludge, J. Anal. Appl. Pyrolysis, 106 (2014) 86–91.
  18. J. Lutcha, Biomass Microwave Pyrolysis, Personal Communication, lutchovi@volny.cz, 2015.
  19. Bionic Fuel Knowledge Partners, The bionic μfuel conversion process used with lignocellulosic feedstock: thermochemical depolymerization facilitated by a combination of catalytic and microwave induced physical and chemical pathways, Bionicworld, 2015. Available at: http://bionic-world.eu/index.php/en/download/send/2-presentations/2-lignocellulosiv-conversionprocess (Accessed 20 January 2017).
  20. Y.-F. Huang, P.-T. Chiueh, S.-L. Lo, A review on microwave pyrolysis of lignocellulosic biomass, Sustain. Environ. Res., 26 (2016) 103–109.
  21. Bionic Fuel Knowledge Partners Inc., Microwave Depolymerization (MWDP), Oswego, NY, USA and Bionic Laboratories BLG GmbH, Gross-Gerau, Germany, 2008–2013.
  22. A. Jones, T.P. Lelyveld, S.D. Mavrofidis, S.W. Kingman, N.G. Miles, Microwave heating application in environmental engineering – a review, Resour. Conserv. Recycl., 34 (2002) 75–90.
  23. Brno Waterworks and Sewerage, Waste Water Treatment Plant in Modřice, Brno Waterworks and Sewerage Systems, Brno (Brněnské vodárny a kanalizace: Čistírna odpadních vod v Modřicích, Brněnské vodárny a kanalizace, Brno). Available at: http://www.bvk.cz/o-spolecnosti/odvadeni-a-cisteniodpadnich-vod/cov-brno-modrice (Accessed 22 March 2017).
  24. CTU Prague Department of Materials Engineering and Chemistry, 6 Practical Laboratory Exercises: Determination of Loss on Ignition, 2009. Available at: http://tpm.fsv.cvut.cz/student/documents/files/CHE/cv6.pdf.
  25. M. Vollmer, Physics of the microwave oven, Phys. Educ., 39 (2004) 74–81.
  26. Shimadzu Corp.: TOC-L, TOC Analyzers, 2017. Available at: http://www.shimadzu.com/an/toc/lab/toc-l.html (Accessed 2 March 2017).
  27. I. Ulbrichová, Heavy Metals, Czech Agriculture University in Prague, (Těžké kovy, Česká zemědělská univerzita v Praze) 2007. Available at: http://fle.czu.cz/~ulbrichova/Skripta_HIO/kapitoly/Skodliviny/Tezkovyuvod.htm (Accessed 22 December 2016).