References

  1. L. El Fels, Suivi physico-chimique, microbiologique et écotoxicologique du compostage de boues de STEP mélangées à des déchets de palmier: validation de nouveaux indices de maturité (Doctoral dissertation, École Doctorale Sciences de l’univers, de l’environnement et de l’espace Toulouse), 159341302, 2014, 295 p.
  2. B.C. O’Kelly, Geotechnical properties of municipal sewage sludge, Geotech. Geol. Eng., 24 (2006) 833–850.
  3. G. Yang, G. Zhang, H. Wang, Current state of sludge production, management, treatment and disposal in China, Water Res., 78 (2015) 60–73.
  4. I.M.C. Lo, W.W. Zhou, K.M. Lee, Geotechnical characterization of dewatered sewage sludge for landfill disposal, Can. Geotech. J., 39 (2002) 1139–1149.
  5. J. Diliunas, K. Dundulis, S. Gadeikis, A. Jurevicius, M. Kaminskas, Geotechnical and hydrochemical properties of sewage sludge, Bull. Eng. Geol. Environ., 69 (2010) 575–582.
  6. S. Valls, A. Yague, E. Vazquez, C. Mariscal, Physical and mechanical properties of concrete with added dry sludge from a sewage treatment plant, Cem. Concr. Res., 34 (2004) 2203–2208.
  7. N. Ramdani, A. Hamou, A. Lousdad, Y. Al-Douri, Physicochemical characterization of sewage sludge and green waste for agricultural utilization, Environ. Technol., 12 (2015) 1594–1604.
  8. C. Valderrama, R. Granzdos, J.L. Cortina, Stabilisation of dewatered domestic sewage sludge by lime addition as raw material for the cement industry: understanding process and reactor performance, Chem. Eng. J., 232 (2013) 485–467.
  9. M. Kacprzak, E. Neczaj, K. Fijałkowski, A. Grobelak, A. Grosser, M. Worwag, A. Rorat, H. Brattebo, Å. Almås, B.R. Singh, Sewage sludge disposal strategies for sustainable development, Environ. Res., 156 (2017) 39–46.
  10. M.A. Tantawy, A.M. El-Roudi, Elham M. Abdalla, M.A. Abdelzaher, Evaluation of the Pozzolanic Activity of Sewage Sludge Ash, International Scholarly Research Network, ISRN Chemical Engineering, 2012 (2012) 8.
  11. L. Hei, P. Jin, X. Zhu, W. Ye, Y. Yang, Characteristics of speciation of heavy metals in municipal sewage sludge of Guangzhou as fertilizer, Procedia Environ. Sci., 31 (2016) 232–240.
  12. A.A. Zorpas, I. Voukkali, Ocean Dumping, An Old and Known Sewage Sludge Methods, Sewage Sludge Management from the Past to Our Century. Nova Science Publishers, New York, 2012, pp. 265–296.
  13. Y. Lin, S. Zhou, F. Li, Y. Lin, Utilization of municipal sewage sludge as additives for the production of eco-cement, J. Hazard. Mater., 213–214 (2012) 457–465.
  14. D.L. Jiang, G.W. Ni, G.Y. Ma, Reuse of municipal wastewater sludge for construction material, Adv. Mater. Res., 156–157 (2010) 939–942.
  15. D.L. Jiang, G.W. Ni, Treatment and disposal of municipal sewage sludge and it’s resources utilization as construction material, Adv. Mater. Res., 194–196 (2011) 2061–2064.
  16. O.A. Johnson, Potential uses of waste sludge in construction, Res. J. Appl. Sci. Eng. Technol., 8 (2014) 565–570.
  17. N. Wahi, C. Joseph, R. Tawie, R. Ikau, Critical review on construction waste control practices: legislative and waste management perspective, Procedia Social Behav. Sci., 224 (2016) 276–283.
  18. S. Chakraborty, W.J. Byung, H.J. Jun, Z. Baloch, Effectiveness of sewage sludge ash combined with waste pozzolanic minerals in developing sustainable construction material: an alternative approach for waste management, J. Clean. Prod., 153 (2017) 253–263.
  19. A. Hamood, J.M. Khatib, Sustainability of Sewage Sludge in Construction, volume in Woodhead Publishing Series in Civil and Structural Engineering, 2016, pp. 625–641.
  20. S. Naamane, Z. Rais, M. Taleb, N.H. Mtarfi, M. Sfaira, Sewage sludge ashes: application in construction materials, J. Mater. Environ. Sci., 7 (2016) 67–72.
  21. M. Chen, D. Blanc, M. Gautier, J. Mehu, R. Gourdon, Environmental and technical assessments of the potential utilization of sewage sludge ashes (SSAs) as secondary raw materials in construction, Waste Manage., 33 (2013) 1268–1275.
  22. C.-L. Yen, D.-H. Tseng, T.-T. Lin, Characterization of eco-cement paste produced from waste sludges, Chemosphere, 84 (2011) 220–226.
  23. S. Naamane, Z. Rais, M. Taleb, The effectiveness of the incineration of sewage sludge on the evolution of physicochemical and mechanical properties of Portland cement, Constr. Build. Mater., 112 (2016) 783–789.
  24. M. Cyr, R. Idir, G. Escadeillas, Use of metakaolin to stabilize sewage sludge ash and municipal solid waste incineration fly ash in cement-based materials, J. Hazard. Mater., 243 (2012) 193–203.
  25. O. Malliou, M. Katsioti, A. Georgiadis, A. Katsiri, Properties of stabilized/solidified admixtures of cement and sewage sludge, Cem. Concr. Compos., 29 (2007) 55–61.
  26. P. Garcés, M. Pérez Carrion, E. García-Alcocel, J. Paya, J. Monzo, M.V. Borrachero, Mechanical and physical properties of cement blended with sewage sludge ash, Waste Manage., 28 (2008) 2495–2502.
  27. J.R. Pan, C. Huang, J.-J. Kuo, S.-H. Lin, Recycling MSWI bottom and fly ash as raw materials for Portland cement, Waste Manage., 28 (2008) 1113–1118.
  28. F. Baeza-Brotons, P. Garcés, J. Paya, J.M. Saval, Portland cement systems with addition of sewage sludge ash. Application in concretes for the manufacture of blocks, J. Clean. Prod., 82 (2014) 112–124.
  29. C.J. Lynn, R.K. Dhir, G.S. Ghataora, R.P. West, Sewage sludge ash characteristics and potential for use in concrete, Constr. Build. Mater., 98 (2015) 767–779.
  30. H.-S. Shi, L.-L. Kan, Leaching behavior of heavy metals from municipal solid wastes incineration (MSWI) fly ash used in concrete, J. Hazard. Mater., 164 (2009) 750–754.
  31. C.-H. Huang, S.-Y. Wang, Application of water treatment sludge in the manufacturing of lightweight aggregate, Constr. Build. Mater., 43 (2013) 174–183.
  32. B. Gonzalez-Corrochano, J. Alonso-Azcarate, L. Rodriguez, A. Perez Lorenzo, M.F. Toriod, J.J. Tejado Ramos, M.D. Corvinos, C. Muro, Valorization of washing aggregate sludge and sewage sludge for lightweight aggregates production, Constr. Build. Mater., 116 (2016) 252–262.
  33. B.L.A. Tuan, C.L. Hwang, K.L. Lin, Y.Y. Chen, M.P. Young, Development of lightweight aggregate from sewage sludge and waste glass powder for concrete, Constr. Build. Mater., 47 (2013) 334–339.
  34. H. Avci, H. Ghorbanpoor, I.B. Topcu, M. Nurbas, Investigation and recycling of paint sludge with cement and lime for producing lightweight construction mortar. J. Environ. Chem. Eng., 5 (2017) 861–869.
  35. S. Volland, J. Brotz, Lightweight aggregates produced from sand sludge and zeolitic rocks, Constr. Build. Mater., 15 (2015) 22–29.
  36. P.C. Lau, D.C.L. Teo, M.A. Mannan Characteristics of lightweight aggregate produced from lime-treated sewage sludge and palm oil fuel ash, Constr. Build. Mater., 15 (2017) 558–567.
  37. O. Kizinievic, R. Zurauskiene, V. Kizinievic, R. Zurauskas, Utilisation of sludge waste from water treatment for ceramic products, Constr. Build. Mater., 41 (2013) 464–473.
  38. J.A. Cusido, C. Soriano, Valorization of pellets from municipal WWTP sludge in lightweight clay ceramics, Waste Manage., 31 (2011) 1372–1380.
  39. Y. Tian, W. Zuo, D. Chen, Crystallization evolution, microstructure and properties of sewage sludge-based glass–ceramics prepared by microwave heating, J. Hazard. Mater., 196 (2011) 370–379.
  40. J. Zhou, T. Li, Q. Zhang, Y. Wang, Z. Shu, Direct-utilization of sewage sludge to prepare split tiles, Ceram. Int., 39 (2013) 9179–9186.
  41. M. Tarrago, M. Garcia-Valles, M.H. Aly, S. Martínez, Valorization of sludge from a wastewater treatment plant by glass-ceramic production, Ceram. Int., 43 (2017) 930–937.
  42. L. Perez-Villarejo, S. Martinez-Martinez, B. Carrasco-Hurtado, D. Eliche-Quesada, C. Urena-Nieto, P.J. Sánchez-Soto, Valorization and inertization of galvanic sludge waste in clay bricks, Appl. Clay Sci., 105–106 (2015) 89–99.
  43. G. Goel, A.S. Kalamdhad, Degraded municipal solid waste as partial substitute for manufacturing fired bricks, Constr. Build. Mater., 155 (2017) 259–266.
  44. C.-H. Weng, D.-F. Lin, P.-C. Chiang, Utilization of sludge as brick materials, Adv. Environ. Res., 7 (2003) 679–685.
  45. I. Merino, L.F. Arevalo, F. Romero, Characterization and possible uses of ashes from wastewater treatment plants, Waste Manage., 25 (2005) 1046–1054.
  46. F. Guerraoui, M. Zamama, M. Ibnoussina, Caractérisations minéralogique et géotechnique des argiles utilisées dans la céramique de Safi (Maroc), Afr. J. Sci. Technol., AJST, 9 (2008) 1–11.
  47. G.F. Ngon Ngon, J. Etame, M.J. Ntamak-Nida, M.B. Mbog, A.M. Maliengoue Mpondo, M. Gérard, R. Yongue-Fouateu, P. Bilong, Geological study of sedimentary clayey materials of the Bomkoul area in the Douala region (Douala sub-basin, Cameroon) for the ceramic industry, C. R. Geosci., 344 (2012) 366– 376.
  48. T. Karayildirim, J. Yanik, M. Yuksel, H. Bockhorn, Characterisation of products from pyrolysis of waste sludges, Fuel, 85 (2006) 1498–1508.
  49. G.M.F. Jannuzzi, F.A.B. Danzigerb, Geological–geotechnical characterisation of Sarapuí II clay, Eng. Geol., 190 (2015) 77–86.
  50. CEDEX,. Normas NLT. II – Ensayos de Suelos. Centro de Estudios y Experimentacion de Obras Publicas, Laboratorio de Geotecnia, 2a ed., Madrid, 1992.
  51. H.-S. Kim, G.-C. Cho, J.Y. Lee, S.-J. Kim, Geotechnical and geophysical properties of deep marine fine-grained sediments recovered during the second Ulleung Basin Gas Hydrate expedition, East Sea, Korea, Mar. Pet. Geol., 47 (2013) 56–65.
  52. ASTM D 2216, Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass.
  53. ASTM D2974-07a, Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils, 2007, p. 4.
  54. B.C. O’Kelly, Effect of biodegradation on the consolidation properties of a dewatered municipal sewage sludge, Waste Manage., 28 (2008) 1395–1405.
  55. C.K. Nmai, D.M. Suchorski, P.L. McDowell, Aggregates for concrete (Developed by Committee E-701, Materials for concrete construction), ACI Education Bulletin E1-99, American Concrete Institute, P9.
  56. M. Tate, The Most Important Property of Cement-Lime Mortar in Masonry Construction, International Building Lime Symposium, Orlando, Florida, 2005, p. 3.
  57. M. Al-Sharif, M.F. Attom, A geoenvironmental application of burned wastewater sludge ash in soil stabilization, Environ. Earth Sci., 71 (2014) 2453–2463.
  58. O. Kruger, A. Grabner, C. Adam, Complete survey of German sewage sludge ash, Environ. Sci. Technol., 48 (2014) 11811–1181.
  59. N. Takeuchi, Y. Okamoto, H. Kobayashi, Fabrication of foamed porous ceramics from mixtures of fly ash and incinerated ash of sewage sludge, J. Soc. Mater. Sci. Jpn., 62 (2013) 353–356.
  60. M. Cyr, M. Coutand, P. Clastres, Technological and environmental behavior of sewage sludge ash (SSA) in cementbased materials, Cem. Concr. Res., 37 (2007) 1278–1289.
  61. S. Naamane, Z. Rais, M. Lachquar, M. Taleb, Characterization of calcined sewage sludge for its incorporation in cement, Mater. Environ. Sci., 5 (2014) 2212–2216.
  62. M. Cyr, G. Klysz, S. Julien, et al., Les cendres d’incinération de boues de stations de traitement des eaux polluées sont-elles utilisables dans les matrices cimentaires, Comparaison avec les cendres volantes de charbon, Déchets sci. Tech., 29 (2003) 22–29.
  63. S. Naamane, Z. Rais, M. Taleb, Influence de l’ajout de la boue obtenue après épuration des eaux usées sur les caractéristiques physico-chimiques des ciments, Matér. Tech., 101 (2013) 703.
  64. T. Ahmad, K. Ahmad, M. Alam, Characterization of water treatment plant’s sludge and its safe disposal options, international conference on solid waste management, 5IconSWM 2015, Procedia Environ. Sci., 35 (2016) 950–955.
  65. M. Aadraoui, M. Elbaghdadi, J. Rais, A. Barakat, W. Ennaji, L.A. Karroum, H. Oumenskou, Effect of incineration of sewage sludge on the evolution of physicochemical characterization and mineralogical properties, J. Mater. Environ. Sci., 8 (2017) 2800–2806.
  66. B. González-Corrochano, J. Alonso-Azcárate, M. Rodas, Characterization of lightweight aggregates manufactured from washing aggregate sludge and fly ash, Resour. Conserv. Recycl., 53 (2009) 571–581.
  67. I. Blanco García, M. Rodas, C.J. Sánchez, M. Dondi, J. Alonso-Azcárate, Technological characterization and ceramic application of gravel pit byproducts from middle-course Jarama river deposits (central Spain), Appl. Clay Sci., 28 (2005) 283–295.
  68. B. González-Corrochano, J. Alonso-Azcárate, M. Rodas, Production of lightweight aggregates from mining and industrial wastes, J. Environ. Manage., 90 (2009) 2801–2812.
  69. C.A. Velis, C. Franco-Salinas, C. O’Sullivan, J. Najorka, A.R. Boccaccini, C.R. Cheeseman, Up-cycling waste glass to minimal water adsorption/absorption lightweight aggregate by rapid low temperature sintering: optimization by dual processmixture response surface methodology, Environ. Sci. Technol., 48 (2014) 7527–7535.
  70. H.X. Chen, X. Ma, H.J. Dai, Reuse of water purification sludge as raw material in cement production, Cem. Concr. Compos., 32 (2010) 436–439.
  71. T.L. Zhan, X. Zhan, W. Lin, Field and laboratory investigation on geotechnical properties of sewage sludge disposed in a pit at Changan landfill, Chengdu, China, Eng. Geol., 170 (2014) 24–32.