References

  1. Vlaamse Milieumaatschappij, Zware metalen in het grondwater in Vlaanderen, Afdeling Operationeel waterbeheer VMM, Dienst Grondwaterbeheer, Aalst, 2015.
  2. N. Kazakis, N. Kantiranis, K. Kalaitzidou, E. Kaprara, M. Mitrakas, R. Frei, G. Vargemezis, P. Tsourlos, A. Zouboulis, A. Filippidis, Origin of hexavalent chromium in groundwater: the example of Sarigkiol Basin, Northern Greece, Sci. Total Environ., 593–594 (2017) 552–566.
  3. J.-H. Kim, J.-C. Kang, Effects of dietary chromium exposure to rockfish, Sebastes schlegelii are ameliorated by ascorbic acid, Ecotoxicol. Environ. Saf., 139 (2017) 109–115.
  4. K.L. Nguyen, H.A. Nguyen, O. Richter, M.T. Pham, V.P. Nguyen, Ecophysiological responses of young mangrove species Rhizophora apiculata (Blume) to different chromium contaminated environments, Sci. Total Environ., 574 (2017) 369–380.
  5. U.S. Department of Labor – Occupational Safety and Health Administration, Hexavalent Chromium, in, 2009.
  6. M. Sittig, Handbook of Toxic and Hazardous Chemicals and Carcinogens, Noyes Publications, 1985.
  7. R. Kumar, S.-J. Kim, K.-H. Kim, S.-H. Lee, H.-S. Park, B.-H. Jeon, Removal of hazardous hexavalent chromium from aqueous phase using zirconium oxide-immobilized alginate beads, Appl. Geochem., (2017). Available at: http://doi.org/10.1016/j. apgeochem.2017.04.002
  8. C. Hua, R. Zhang, F. Bai, P. Lu, X. Liang, Removal of chromium (VI) from aqueous solutions using quaternized chitosan microspheres, Chinese J. Chem. Eng., 25 (2017) 153–158.
  9. W. Qiu, D. Yang, J. Xu, B. Hong, H. Jin, D. Jin, X. Peng, J. Li, H. Ge, X. Wang, Efficient removal of Cr(VI) by magnetically separable CoFe2O4/activated carbon composite, J. Alloy. Compd., 678 (2016) 179–184.
  10. J. Zhang, C. Zhang, G. Wei, Y. Li, X. Liang, W. Chu, H. He, D. Huang, J. Zhu, R. Zhu, Reduction removal of hexavalent chromium by zinc-substituted magnetite coupled with aqueous Fe(II) at neutral pH value, J. Colloid Interface Sci., 500 (2017) 20–29.
  11. S.P. Dubey, K. Gopal, Adsorption of chromium(VI) on low cost adsorbents derived from agricultural waste material: a comparative study, J. Hazard. Mater., 145 (2007) 465–470.
  12. A.K. Bhattacharya, T.K. Naiya, S.N. Mandal, S.K. Das, Adsorption, kinetics and equilibrium studies on removal of Cr(VI) from aqueous solutions using different low-cost adsorbents, Chem. Eng. J., 137 (2008) 529–541.
  13. S. Vanderheyden, K. Vanreppelen, J. Yperman, R. Carleer, S. Schreurs, Chromium(VI) removal using activated carbon prepared from brewers’ spent grain (2017).
  14. J. Rivera-Utrilla, M. Sánchez-Polo, V. Gómez-Serrano, P.M. Álvarez, M.C.M. Alvím-Ferraz, J.M. Dias, Activated carbon modifications to enhance its water treatment applications. An overview, J. Hazard. Mater., 187 (2011) 1–23.
  15. S.X. Liu, X. Chen, X.Y. Chen, Z.F. Liu, H.L. Wang, Activated carbon with excellent chromium(VI) adsorption performance prepared by acid-base surface modification, J. Hazard. Mater., (2007) 315–319.
  16. Y. Sun, Q. Yue, B. Gao, Y. Gao, Q. Li, Y. Wang, Adsorption of hexavalent chromium on Arundo donax Linn activated carbon amine-crosslinked copolymer, Chem. Eng. J., 217 (2013) 240–247.
  17. X. Xu, Y. Gao, B. Gao, X. Tan, Y.-Q. Zhao, Q. Yue, Y. Wang, Characteristics of diethylenetriamine-crosslinked cotton stalk/wheat stalk and their biosorption capacities for phosphate, J. Hazard. Mater., 192 (2011) 1690–1696.
  18. A. Bhatnagar, W. Hogland, M. Marques, M. Sillanpää, An overview of the modification methods of activated carbon for its water treatment applications, Chem. Eng. J., (2013) 499–511.
  19. S.I. Mussatto, G. Dragone, I.C. Roberto, Brewer’s spent grain: generation, characteristics and potential applications, J. Cereal Sci., (2006) 1–14.
  20. D. Cook, Brewers’ Grains: Opportunities About, Brewers’ Guardian, Advantage Publishing Ltd., 2011.
  21. S.R.H. Vanderheyden, R. Van Ammel, K. Sobiech-Matura, K. Vanreppelen, S. Schreurs, W. Schroeyers, J. Yperman, R. Carleer, Adsorption of cesium on different types of activated carbon, J. Radioanal. Nucl. Chem., (2016) 1–10.
  22. C. Xiros, P. Christakopoulos, Biotechnological potential of brewers spent grain and its recent applications, Waste Biomass Valorization, 2 (2012) 213–232.
  23. A.S.N. Mahmood, J.G. Brammer, A. Hornung, A. Steele, S. Poulston, The intermediate pyrolysis and catalytic steam reforming of brewers spent grain, J. Anal. Appl. Pyrolysis, 103 (2013) 328–342.
  24. S.I. Mussatto, M. Fernandes, G.J.M. Rocha, J.J.M.T. Orfao, J.A. Teixeria, I.C. Roberto, Production, characterization and application of activated carbon from brewer’s spent grain lignin, Bioresour. Technol., (2010) 2450–2457.
  25. M. Linko, A. Haikara, A. Ritala, M. Penttilä, Recent advances in the malting and brewing industry, J. Biotechnol., 65 (1998) 85–98.
  26. C. Chen, J. Wang, Removal of Pb2+, Ag+, Cs+ and Sr2+ from aqueous solution by brewery’s waste biomass, J. Hazard. Mater., 151 (2008) 65–70.
  27. A. Ktenioudaki, N. O’Shea, E. Gallagher, Rheological properties of wheat dough supplemented with functional by-products of food processing: brewer’s spent grain and apple pomace, J. Food Eng., 116 (2013) 362–368.
  28. S.I. Mussatto, J. Moncada, I.C. Roberto, C.A. Cardona, Technoeconomic analysis for brewer’s spent grains use on a biorefinery concept: The Brazilian case, Bioresour. Technol., 148 (2013) 302–310.
  29. E. Vieira, M.A.M. Rocha, E. Coelho, O. Pinho, J.A. Saraiva, I.M.P.L.V.O. Ferreira, M.A. Coimbra, Valuation of brewer’s spent grain using a fully recyclable integrated process for extraction of proteins and arabinoxylans, Ind. Crop. Prod., 52 (2014) 136–143.
  30. K. Vanreppelen, S. Vanderheyden, T. Kuppens, S. Schreurs, J. Yperman, R. Carleer, Activated carbon from pyrolysis of brewer’s spent grain: production and adsorption properties, Waste Manage. Res., 32 (2014) 634–645.
  31. I. Velghe, R. Carleer, J. Yperman, S. Schreurs, J. D’Haen, Characterisation of adsorbents prepared by pyrolysis of sludge and sludge/disposal filter cake mix, Water Res., 46 (2012) 2783–2794.
  32. D.T. Duranoglu, A.W. Beker, U., Kinetics and thermodynamics of hexavalent chromium adsorption onto activated carbon derived from acrylonitrile-divinylbenzene copolymer, Chem. Eng. J., (2012) 193–202.
  33. F. Di Natale, A. Lancia, A. Molino, D. Musmarra, Removal of chromium ions form aqueous solutions by adsorption on activated carbon and char, J. Hazard. Mater., (2007) 381–390.
  34. ASTM, Standard Test Method for the Determination of Hexavalent Chromium in Workplace Air by Ion Chromatography and Spectrophotometric Measurement Using 1,5-Diphenylcarbazide, 2002.
  35. S.Y. Lagergren, Zur theorie der sogenannten adsorption gelöster stoffe, Kungliga Svenska Vetenskapsakademiens, Handlingar, 24 (1898) 1–39.
  36. R.-L. Tseng, F.-C. Wu, R.-S. Juang, Characteristics and applications of the Lagergren’s first-order equation for adsorption kinetics, J. Taiwan Inst. Chem. Eng., 41 (2010) 661–669.
  37. Y.S. Ho, G. McKay, Kinetic models for the sorption of dye from aqueous solution by wood, Process Saf. Environ., 76 (1998) 183–191.
  38. Z. Reddad, C. Gerente, Y. Andres, P.L. Cloirec, Mechanisms of Cr(III) and Cr(VI) removal from aqueous solutions by sugar beet pulp, Environ. Technol., 24 (2003) 257–264.