References
  -  T.Y. Cath, A.E. Childress, M. Elimelech, Forward osmosis:
    principles, applications, and recent developments, J. Membr.
    Sci., 281 (2006) 70–87. 
-  D.L. Shaffer, J.R. Werber, H. Jaramillo, S. Lin, M. Elimelech,
    Forward osmosis: where are we now?, Desalination, 356 (2015)
    271–284. 
-  H.K. Shon, S. Phuntsho, T.C. Zhang, R.Y. Surampalli, Forward
    Osmosis—Fundamentals and Applications, American Society
    of Civil Engineers, USA, 2015. 
-  J. Schwinge, P.R. Neal, D.E. Wiley, D.F. Fletcher, A.G. Fane,
    Spiral wound modules and spacers: review and analysis, J.
    Membr. Sci., 242 (2004) 129–153. 
-  M. Ben Boudinar, W.T. Hanbury, S. Avlonitis, Numerical
    simulation and optimisation of spiral-wound modules,
    Desalination, 86 (1992) 273–290. 
-  S. Avlonitis, W.T. Hanbury, M. Ben Boudinar, Spiral wound
    modules performance. An analytical solution: part II,
    Desalination, 89 (1993) 227–246. 
-  S. Avlonitis, W.T. Hanbury, M. Ben Boudinar, Spiral wound
    modules performance. An analytical solution: part I,
    Desalination, 89 (1993) 227–246. 
-  D.H. Jung, J. Lee, D.Y. Kim, Y.G. Lee, M. Park, S. Lee, D.R. Yang,
    J.H. Kim, Simulation of forward osmosis membrane process:
    effect of membrane orientation and flow direction of feed and
    draw solutions, Desalination, 277 (2011) 83–91. 
-  B. Gu, D.Y. Kim, J.H. Kim, D.R. Yang, Mathematical model of
    flat sheet membrane modules for FO process: plate-and-frame
    module and spiral-wound module, J. Membr. Sci., 379 (2011)
    403–415. 
-  G. Schock, A. Miquel, Mass transfer and pressure loss in spiral
    wound modules, Desalination, 64 (1987) 339–352. 
-  V.V Ranade, A. Kumar, Fluid dynamics of spacer filled
    rectangular and curvilinear channels, J. Membr. Sci., 271 (2006)
    1–15. 
-  V.V. Ranade, A. Kumar, Comparison of flow structures in
    spacer-filled flat and annular channels, Desalination, 191 (2006)
    236–244. 
-  S. Kook, J. Kim, S.-J. Kim, J. Lee, D. Han, S. Phuntsho, W.-G.
    Shim, M. Hwang, H.K. Shon, I.S. Kim, Effect of initial feed
    and draw flowrates on performance of an 8040 spiral-wound
    forward osmosis membrane element, Desal. Wat. Treat., 72
    (2017) 1–12. 
-  Y.C. Kim, S.J. Park, Experimental study of a 4040 spiral-wound
    forward-osmosis membrane module, Environ. Sci. Technol., 45
    (2011) 7737–7745. 
-  V.A. Haaksman, A. Siddiqui, C. Schellenberg, J. Kidwell, J.S.
    Vrouwenvelder, C. Picioreanu, Characterization of feed channel
    spacer performance using geometries obtained by X-ray
    computed tomography, J. Membr. Sci., 522 (2017) 124–139. 
-  G.A. Fimbres-Weihs, D.E. Wiley, Review of 3D CFD modeling
    of flow and mass transfer in narrow spacer-filled channels in
    membrane modules, Chem. Eng. Process. Process Intensif., 49
    (2010) 759–781. 
-  G.A. Fimbres-Weihs, D.E. Wiley, Numerical study of mass
    transfer in three-dimensional spacer-filled narrow channels
    with steady flow, J. Membr. Sci., 306 (2007) 228–243. 
-  G.A. Fimbres-Weihs, D.E. Wiley, Numerical study of twodimensional
    multi-layer spacer designs for minimum drag and
    maximum mass transfer, J. Membr. Sci., 325 (2008) 809–822. 
-  O. Kavianipour, G.D. Ingram, H.B. Vuthaluru, Investigation
    into the effectiveness of feed spacer configurations for reverse
    osmosis membrane modules using Computational Fluid
    Dynamics, J. Membr. Sci., 526 (2017) 156–171. 
-  A. Saeed, Effect of feed channel spacer geometry on
    hydrodynamics and mass transport in membrane modules,
    PhD Thesis, Department of Chemical Engineering, School of
    Chemical and Petroleum Engineering, Curtin University, 2012. 
-  G.A. Fimbres-Weihs, D.E. Wiley, D.F. Fletcher, Unsteady flows
    with mass transfer in narrow zigzag spacer-filled channels: a
    numerical study, Ind. Eng. Chem. Res., 45 (2006) 6594–6603. 
-  A. Storck, D. Hutin, Energetic aspects of turbulence promotion
    applied to electrolysis processes, Can. J. Chem. Eng., 58 (1980)
    92–102. 
-  F. Li, W. Meindersma, A.B. De Haan, T. Reith, Optimization of
    commercial net spacers in spiral wound membrane modules, J.
    Membr. Sci., 208 (2002) 289–302. 
-  Y.L. Li, K.L. Tung, CFD simulation of fluid flow through
    spacer-filled membrane module: selecting suitable cell types for
    periodic boundary conditions, Desalination, 233 (2008) 351–358. 
-  A.R. Da Costa, A.G. Fane, C.J.D. Fell, A.C.M. Franken, Optimal
    channel spacer design for ultrafiltration, J. Membr. Sci., 62
    (1991) 275–291. 
-  S.S. Bucs, A.I. Radu, V. Lavric, J.S. Vrouwenvelder, C.
    Picioreanu, Effect of different commercial feed spacers on
    biofouling of reverse osmosis membrane systems : a numerical
    study, Desalination, 343 (2014) 26–37. 
-  A.I. Radu, J.S. Vrouwenvelder, M.C.M. Van Loosdrecht, C.
    Picioreanu, Modeling the effect of biofilm formation on reverse
    osmosis performance : flux, feed channel pressure drop and
    solute passage, J. Membr. Sci., 365 (2010) 1–15. 
-  A.I. Radu, L. Bergwerff, M.C.M. Van Loosdrecht, C. Picioreanu,
    A two-dimensional mechanistic model for scaling in spiral
    wound membrane systems, Chem. Eng. J., 241 (2014) 77–91. 
-  J.S. Vrouwenvelder, D.A.G. Von Der Schulenburg, J.C.
    Kruithof, M.L. Johns, M.C.M. Van Loosdrecht, Biofouling of
    spiral-wound nanofiltration and reverse osmosis membranes :
    a feed spacer problem, Water Res., 43 (2009) 583–594. 
-  M. Park, J.H. Kim, Numerical analysis of spacer impacts on
    forward osmosis membrane process using concentration
    polarization index, J. Membr. Sci., 427 (2013) 10–20. 
-  J. Schwinge, D.E. Wiley, D.F. Fletcher, Simulation of unsteady
    flow and vortex shedding for narrow spacer-filled channels,
    Ind. Eng. Chem. Res., 42 (2003) 4962–4977. 
-  M. Shakaib, S.M.F. Hasani, M. Mahmood, Study on the effects
    of spacer geometry in membrane feed channels using threedimensional
    computational flow modeling, J. Membr. Sci., 297
    (2007) 74–89. 
-  M. Shakaib, S.M.F. Hasani, M. Mahmood, CFD modeling for
    flow and mass transfer in spacer-obstructed membrane feed
	  channels, J. Membr. Sci., 326 (2009) 270–284.