References
- S.S. Shinde, C.H. Bhosale, K.Y. Rajpure, Photocatalytic oxidation
of salicylic acid and 4-chlorophenol in aqueous solutions
mediated by modified AlFe2O3 catalyst under sunlight, J. Mol.
Catal. A: Chem., 347 (2011) 65–72.
- B. Deka, K.G. Bhattacharyya, Using coal fly ash as a support
for Mn(II), Co(II) and Ni(II) and utilizing the materials as
novel oxidation catalysts for 4-chlorophenol mineralization,
J. Environ. Manage., 150 (2015) 479–488.
- U.G. Ahlborg, T.M. Thunberg, H.C. Spencer, Chlorinated
phenols: occurrence, toxicity, metabolism, and environmental
impact, Crit. Rev. Toxicol., 7(1980) 1–35.
- X. Liu, J.H. Fan, L.M. Ma, Elimination of 4-chlorophenol
in aqueous solution by the bimetallic Al–Fe/O2 at normal
temperature and pressure, Chem. Eng. J., 236 (2014) 274–284.
- M.D. Marković, B.P. Dojčinović, B.M. Obradović, J. Nešić,
M.M. Natić, T.B. Tosti, M.M. Kuraica, D.D. Manojlović,
Degradation and detoxification of the 4-chlorophenol by nonthermal
plasma-influence of homogeneous catalysts, Sep. Purif.
Technol., 154 (2015) 246–254.
- Z. Ai, P. Yang, X. Lu, Degradation of 4-chlorophenol by a
microwave assisted photocatalysis method, J. Hazard. Mater.,
124 (2005) 147–152.
- P. Yan, L. Xu, J. Xia, Y. Huang, J. Qiu, Q. Xu, Q. Zhang, H. Li,
Photoelectrochemical sensing of 4-chlorophenol based on
Au/BiOCl nanocomposites, Talanta, 156 (2016) 257–264.
- M. Pera-Titus, V. Garcı́a-Molina, M.A. Baños, J. Giménez, S.
Esplugas, Degradation of chlorophenols by means of advanced
oxidation processes: a general review, Appl. Catal., B, 47 (2004)
219–256.
- F.-x. Ye, D.-s. Shen, Acclimation of anaerobic sludge degrading
chlorophenols and the biodegradation kinetics during
acclimation period, Chemosphere, 54 (2004) 1573–1580.
- L.W. Matzek, K.E. Carter, Activated persulfate for organic
chemical degradation: a review, Chemosphere, 151 (2016)
178–188.
- C.B. Molina, J.A. Zazo, J.A. Casas, J.J. Rodriguez, CWPO of 4-CP
and industrial wastewater with Al–Fe pillared clays, Water Sci.
Technol., 61 (2010) 2161–2168.
- J. Deng, Y. Shao, N. Gao, Y. Deng, C. Tan, S. Zhou, Zero-valent
iron/persulfate (Fe0/PS) oxidation acetaminophen in water, Int.
J. Environ. Sci. Technol., 11 (2014) 881–890.
- I. Hussain, Y. Zhang, S. Huang, X. Du, Degradation of
p-chloroaniline by persulfate activated with zero-valent iron,
Chem. Eng. J., 203 (2012) 269–276.
- I. Hussain, Y. Zhang, S. Huang, Degradation of aniline with
zero-valent iron as an activator of persulfate in aqueous
solution, RSC Adv., 4 (2014) 3502–3511.
- J. Yan, L. Han, W. Gao, S. Xue, M. Chen, Biochar supported
nanoscale zerovalent iron composite used as persulfate activator
for removing trichloroethylene, Bioresour. Technol., 175 (2015)
269–274.
- X. Wei, N. Gao, C. Li, Y. Deng, S. Zhou, L. Li, Zero-valent iron
(ZVI) activation of persulfate (PS) for oxidation of bentazon in
water, Chem. Eng. J., 285 (2016) 660–670.
- J. Zhao, Y. Zhang, X. Quan, S. Chen, Enhanced oxidation of
4-chlorophenol using sulfate radicals generated from zerovalent
iron and peroxydisulfate at ambient temperature, Sep.
Purif. Technol., 71 (2010) 302–307.
- M.A. Al-Shamsi, N.R. Thomson, Treatment of organic
compounds by activated persulfate using nanoscale zerovalent
iron, Ind. Eng. Chem. Res., 52 (2013) 13564–13571.
- K. Temiz, T. Olmez-Hanci, I. Arslan-Alaton, Zero-valent ironactivated
persulfate oxidation of a commercial alkyl phenol
polyethoxylate, Environ. Technol., 37 (2016) 1757–1767.
- Q. Wang, Y. Shao, N. Gao, W. Chu, J. Deng, X. Shen, X. Lu,
Y. Zhu, X. Wei, Degradation of alachlor with zero-valent iron
activating persulfate oxidation, J. Taiwan Inst. Chem. Eng., 63
(2016) 379–385.
- C. Zhu, G. Fang, D.D. Dionysiou, C. Liu, J. Gao, W. Qin, D. Zhou,
Efficient transformation of DDTs with persulfate activation by
zero-valent iron nanoparticles: a mechanistic study, J. Hazard.
Mater., 316 (2016) 232–241.
- Y.T. Lin, C. Liang, C.W. Yu, Trichloroethylene degradation by
various forms of iron activated persulfate oxidation with or
without the assistance of ascorbic acid, Ind. Eng. Chem. Res.,
55 (2016) 2302–2308.
- X. Li, M. Zhou, Y. Pan, L. Xu, Pre-magnetized Fe0/persulfate
for notably enhanced degradation and dechlorination of
2,4-dichlorophenol, Chem. Eng. J., 307 (2017) 1092–1104.
- L. Zhao, Y. Ji, D. Kong, J. Lu, Q. Zhou, X. Yin, Simultaneous
removal of bisphenol A and phosphate in zero-valent iron
activated persulfate oxidation process, Chem. Eng. J., 303 (2016)
458–466.
- M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A.
Escaleira, Response surface methodology (RSM) as a tool for
optimization in analytical chemistry, Talanta, 76 (2008) 965–977.
- M. Afrand, M.H. Esfe, E. Abedini, H. Teimouri, Predicting the
effects of magnesium oxide nanoparticles and temperature
on the thermal conductivity of water using artificial neural
network and experimental data, Physica E, 87 (2017) 242–247.
- J.P. Maran, V. Sivakumar, K. Thirugnanasambandham, R.
Sridhar, Artificial neural network and response surface
methodology modeling in mass transfer parameters predictions
during osmotic dehydration of Carica papaya L., Alexandria
Eng. J., 52 (2013) 507–516.
- S. Chamoli, ANN and RSM approach for modeling and
optimization of designing parameters for a V down perforated
baffle roughened rectangular channel, Alexandria Eng. J.,
54 (2015) 429–446.
- J.P. Maran, B. Priya, Comparison of response surface
methodology and artificial neural network approach towards
efficient ultrasound-assisted biodiesel production from
muskmelon oil, Ultrason. Sonochem., 23 (2015) 192–200.
- R.V. Lenth, Response-surface methods in R using RSM, J. Stat.
Software, 32 (2009) 1–17.
- M.T. Hagan, M.B. Menhaj, Training feedforward networks
with the Marquardt algorithm, IEEE Trans. Neural Networks,
5 (1994) 989–993.
- M. Shams, M.H. Dehghani, R. Nabizadeh, A. Mesdaghinia, M.
Alimohammadi, A.A. Najafpoor, Adsorption of phosphorus
from aqueous solution by cubic zeolitic imidazolate
framework-8: modeling, mechanical agitation versus sonication,
J. Mol. Liq., 224 (2016) 151–157.
- M.H. Muhamad, S.R. Abdullah, A.B. Mohamad, R.A. Rahman,
A.A. Kadhum, Application of response surface methodology
(RSM) for optimisation of COD, NH3–N and 2,4-DCP removal
from recycled paper wastewater in a pilot-scale granular
activated carbon sequencing batch biofilm reactor (GAC-SBBR),
J. Environ. Manage., 121 (2013) 179–190.
- J. Fan, H. Wang, L. Ma, Oxalate-assisted oxidative degradation of
4-chlorophenol in a bimetallic, zero-valent iron–aluminum/air/water system, Environ. Sci. Pollut. Res., 23 (2016) 16686–16698.
- C. Liang, Z.S. Wang, C.J. Bruell, Influence of pH on persulfate
oxidation of TCE at ambient temperatures, Chemosphere,
66 (2007) 106–113.
- J. Li, Q. Liu, Q. Ji, B. Lai, Degradation of p-nitrophenol (PNP)
in aqueous solution by Fe0-PM-PS system through response
surface methodology (RSM), Appl. Catal., B, 200 (2017) 633–646.
- D.H. Bremner, A.E. Burgess, D. Houllemare, K.-C. Namkung,
Phenol degradation by using hydroxyl radicals generated from
zero-valence iron and hydrogen peroxide, Appl. Catal., B,
63 (2006) 15–19.
- H. Kusic, I. Peternel, N. Koprivanac, A. Loncaric Bozic,
Iron activated persulfate oxidation of an azo dye in model
wastewater: influence of iron activator type on process
optimization, J. Environ. Eng., 137 (2011) 454–463.
- A.E. Pirbazari, M.A. Zanjanchi, Heterogeneous photocatalytic
degradation of 4-chlorophenol by immobilization of cobalt
tetrasulphophthalocyanine onto MCM-41, Korean J. Chem.
Eng., 31 (2014) 218–223.
- E.S. Elmolla, M. Chaudhuri, M.M. Eltoukhy, The use of artificial
neural network (ANN) for modeling of COD removal from
antibiotic aqueous solution by the Fenton process, J. Hazard.
Mater., 179 (2010) 127–134.