References

  1. S.S. Shinde, C.H. Bhosale, K.Y. Rajpure, Photocatalytic oxidation of salicylic acid and 4-chlorophenol in aqueous solutions mediated by modified AlFe2O3 catalyst under sunlight, J. Mol. Catal. A: Chem., 347 (2011) 65–72.
  2. B. Deka, K.G. Bhattacharyya, Using coal fly ash as a support for Mn(II), Co(II) and Ni(II) and utilizing the materials as novel oxidation catalysts for 4-chlorophenol mineralization, J. Environ. Manage., 150 (2015) 479–488.
  3. U.G. Ahlborg, T.M. Thunberg, H.C. Spencer, Chlorinated phenols: occurrence, toxicity, metabolism, and environmental impact, Crit. Rev. Toxicol., 7(1980) 1–35.
  4. X. Liu, J.H. Fan, L.M. Ma, Elimination of 4-chlorophenol in aqueous solution by the bimetallic Al–Fe/O2 at normal temperature and pressure, Chem. Eng. J., 236 (2014) 274–284.
  5. M.D. Marković, B.P. Dojčinović, B.M. Obradović, J. Nešić, M.M. Natić, T.B. Tosti, M.M. Kuraica, D.D. Manojlović, Degradation and detoxification of the 4-chlorophenol by nonthermal plasma-influence of homogeneous catalysts, Sep. Purif. Technol., 154 (2015) 246–254.
  6. Z. Ai, P. Yang, X. Lu, Degradation of 4-chlorophenol by a microwave assisted photocatalysis method, J. Hazard. Mater., 124 (2005) 147–152.
  7. P. Yan, L. Xu, J. Xia, Y. Huang, J. Qiu, Q. Xu, Q. Zhang, H. Li, Photoelectrochemical sensing of 4-chlorophenol based on Au/BiOCl nanocomposites, Talanta, 156 (2016) 257–264.
  8. M. Pera-Titus, V. Garcı́a-Molina, M.A. Baños, J. Giménez, S. Esplugas, Degradation of chlorophenols by means of advanced oxidation processes: a general review, Appl. Catal., B, 47 (2004) 219–256.
  9. F.-x. Ye, D.-s. Shen, Acclimation of anaerobic sludge degrading chlorophenols and the biodegradation kinetics during acclimation period, Chemosphere, 54 (2004) 1573–1580.
  10. L.W. Matzek, K.E. Carter, Activated persulfate for organic chemical degradation: a review, Chemosphere, 151 (2016) 178–188.
  11. C.B. Molina, J.A. Zazo, J.A. Casas, J.J. Rodriguez, CWPO of 4-CP and industrial wastewater with Al–Fe pillared clays, Water Sci. Technol., 61 (2010) 2161–2168.
  12. J. Deng, Y. Shao, N. Gao, Y. Deng, C. Tan, S. Zhou, Zero-valent iron/persulfate (Fe0/PS) oxidation acetaminophen in water, Int. J. Environ. Sci. Technol., 11 (2014) 881–890.
  13. I. Hussain, Y. Zhang, S. Huang, X. Du, Degradation of p-chloroaniline by persulfate activated with zero-valent iron, Chem. Eng. J., 203 (2012) 269–276.
  14. I. Hussain, Y. Zhang, S. Huang, Degradation of aniline with zero-valent iron as an activator of persulfate in aqueous solution, RSC Adv., 4 (2014) 3502–3511.
  15. J. Yan, L. Han, W. Gao, S. Xue, M. Chen, Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene, Bioresour. Technol., 175 (2015) 269–274.
  16. X. Wei, N. Gao, C. Li, Y. Deng, S. Zhou, L. Li, Zero-valent iron (ZVI) activation of persulfate (PS) for oxidation of bentazon in water, Chem. Eng. J., 285 (2016) 660–670.
  17. J. Zhao, Y. Zhang, X. Quan, S. Chen, Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zerovalent iron and peroxydisulfate at ambient temperature, Sep. Purif. Technol., 71 (2010) 302–307.
  18. M.A. Al-Shamsi, N.R. Thomson, Treatment of organic compounds by activated persulfate using nanoscale zerovalent iron, Ind. Eng. Chem. Res., 52 (2013) 13564–13571.
  19. K. Temiz, T. Olmez-Hanci, I. Arslan-Alaton, Zero-valent ironactivated persulfate oxidation of a commercial alkyl phenol polyethoxylate, Environ. Technol., 37 (2016) 1757–1767.
  20. Q. Wang, Y. Shao, N. Gao, W. Chu, J. Deng, X. Shen, X. Lu, Y. Zhu, X. Wei, Degradation of alachlor with zero-valent iron activating persulfate oxidation, J. Taiwan Inst. Chem. Eng., 63 (2016) 379–385.
  21. C. Zhu, G. Fang, D.D. Dionysiou, C. Liu, J. Gao, W. Qin, D. Zhou, Efficient transformation of DDTs with persulfate activation by zero-valent iron nanoparticles: a mechanistic study, J. Hazard. Mater., 316 (2016) 232–241.
  22. Y.T. Lin, C. Liang, C.W. Yu, Trichloroethylene degradation by various forms of iron activated persulfate oxidation with or without the assistance of ascorbic acid, Ind. Eng. Chem. Res., 55 (2016) 2302–2308.
  23. X. Li, M. Zhou, Y. Pan, L. Xu, Pre-magnetized Fe0/persulfate for notably enhanced degradation and dechlorination of 2,4-dichlorophenol, Chem. Eng. J., 307 (2017) 1092–1104.
  24. L. Zhao, Y. Ji, D. Kong, J. Lu, Q. Zhou, X. Yin, Simultaneous removal of bisphenol A and phosphate in zero-valent iron activated persulfate oxidation process, Chem. Eng. J., 303 (2016) 458–466.
  25. M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta, 76 (2008) 965–977.
  26. M. Afrand, M.H. Esfe, E. Abedini, H. Teimouri, Predicting the effects of magnesium oxide nanoparticles and temperature on the thermal conductivity of water using artificial neural network and experimental data, Physica E, 87 (2017) 242–247.
  27. J.P. Maran, V. Sivakumar, K. Thirugnanasambandham, R. Sridhar, Artificial neural network and response surface methodology modeling in mass transfer parameters predictions during osmotic dehydration of Carica papaya L., Alexandria Eng. J., 52 (2013) 507–516.
  28. S. Chamoli, ANN and RSM approach for modeling and optimization of designing parameters for a V down perforated baffle roughened rectangular channel, Alexandria Eng. J., 54 (2015) 429–446.
  29. J.P. Maran, B. Priya, Comparison of response surface methodology and artificial neural network approach towards efficient ultrasound-assisted biodiesel production from muskmelon oil, Ultrason. Sonochem., 23 (2015) 192–200.
  30. R.V. Lenth, Response-surface methods in R using RSM, J. Stat. Software, 32 (2009) 1–17.
  31. M.T. Hagan, M.B. Menhaj, Training feedforward networks with the Marquardt algorithm, IEEE Trans. Neural Networks, 5 (1994) 989–993.
  32. M. Shams, M.H. Dehghani, R. Nabizadeh, A. Mesdaghinia, M. Alimohammadi, A.A. Najafpoor, Adsorption of phosphorus from aqueous solution by cubic zeolitic imidazolate framework-8: modeling, mechanical agitation versus sonication, J. Mol. Liq., 224 (2016) 151–157.
  33. M.H. Muhamad, S.R. Abdullah, A.B. Mohamad, R.A. Rahman, A.A. Kadhum, Application of response surface methodology (RSM) for optimisation of COD, NH3–N and 2,4-DCP removal from recycled paper wastewater in a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR), J. Environ. Manage., 121 (2013) 179–190.
  34. J. Fan, H. Wang, L. Ma, Oxalate-assisted oxidative degradation of 4-chlorophenol in a bimetallic, zero-valent iron–aluminum/air/water system, Environ. Sci. Pollut. Res., 23 (2016) 16686–16698.
  35. C. Liang, Z.S. Wang, C.J. Bruell, Influence of pH on persulfate oxidation of TCE at ambient temperatures, Chemosphere, 66 (2007) 106–113.
  36. J. Li, Q. Liu, Q. Ji, B. Lai, Degradation of p-nitrophenol (PNP) in aqueous solution by Fe0-PM-PS system through response surface methodology (RSM), Appl. Catal., B, 200 (2017) 633–646.
  37. D.H. Bremner, A.E. Burgess, D. Houllemare, K.-C. Namkung, Phenol degradation by using hydroxyl radicals generated from zero-valence iron and hydrogen peroxide, Appl. Catal., B, 63 (2006) 15–19.
  38. H. Kusic, I. Peternel, N. Koprivanac, A. Loncaric Bozic, Iron activated persulfate oxidation of an azo dye in model wastewater: influence of iron activator type on process optimization, J. Environ. Eng., 137 (2011) 454–463.
  39. A.E. Pirbazari, M.A. Zanjanchi, Heterogeneous photocatalytic degradation of 4-chlorophenol by immobilization of cobalt tetrasulphophthalocyanine onto MCM-41, Korean J. Chem. Eng., 31 (2014) 218–223.
  40. E.S. Elmolla, M. Chaudhuri, M.M. Eltoukhy, The use of artificial neural network (ANN) for modeling of COD removal from antibiotic aqueous solution by the Fenton process, J. Hazard. Mater., 179 (2010) 127–134.