References

  1. T.E. Ouafy, A. Chtaını, H. Oulfajrıte, R. Najıh, Carbon paste electrode modified with clay for electrochemical detection of copper (II) using cyclic voltammetry, Acta Tech. Corvin., 8 (2015) 81–84.
  2. D. Melucci, M. Locatelli, C. Locatelli, Trace level voltammetric determination of heavy metals and total mercury in tea matrices, Food Chem. Toxicol., 62 (2013) 901–907.
  3. A. Afkhami, R. Moosavi, T. Madrakian, H. Keypour, A. Ramezani-Aktij, M. Mirzaei-Monsef, Construction and application of an electrochemical sensor for simultaneous determination of Cd(II), Cu(II) and Hg(II) in water and foodstuff samples, Electroanalysis, 26 (2014) 786–795.
  4. Ş. Tokalıoğlu, F. Gürbüz, Selective determination of copper and iron in various food samples by the solid phase extraction, Food Chem., 123 (2010) 183–187.
  5. H. Goudarziafshar, M. Nikoorazm, S.S. Mortazavi, S. Abbasi, A. Farmany, Ultra-sensitive quantification of copper in food and water samples by electrochemical adsorptive stripping voltammetry, Environ. Monit. Assess., 185 (2013) 8823–8829.
  6. I.M. Isa, N.I., Wardani, N. Hashim, S.A. Ghani, Determination of trace level copper(II) in Malaysian vegetables by cyclic voltammetry, Int. J. Electrochem. Sci., 10 (2015) 498–503.
  7. I.A. Darwish, D.A. Blake, Development and validation of a onestep immunoassay for determination of cadmium in human serum, Anal. Chem., 74 (2002) 52–58.
  8. A. Afkhami, M.S. Shahrivar, H. Ghaedi, T. Madrakian, Construction of modified carbon paste electrode for highly sensitive simultaneous electrochemical determination of trace amounts of copper (II) and cadmium (II), Electroanalysis, 28 (2016) 296–303.
  9. E.L. Que, D.W. Domaille, C.J. Chang, Metals in neurobiology: probing their chemistry and biology with molecular imaging, Chem. Rev., 108 (2008) 1517–1549.
  10. S. Veli, B. Alyüz, Adsorption of copper and zinc from aqueous solutions by using natural clay, J. Hazard. Mater., 149 (2007) 226–233.
  11. T. Liu, Y. Luo, L. Kong, J. Zhu, W. Wang, L. Tan, Voltammetric detection of Cu2+ using poly(azure A) modified glassy carbon electrode based on mimic peroxidase behavior of copper, Sens. Actuators, B, 235 (2016) 568–574.
  12. D. Afzali, A. Mostafavi, M.A. Taher, A. Moradian, Flame atomic absorption spectrometry determination of trace amounts of copper after separation and preconcentration onto TDMBAC-treated analcime pyrocatechol-immobilized, Talanta, 71 (2007) 971–975.
  13. M.E. Mahmoud, I.M.M. Kenawy, M.M.A.H. Hafez, R.R. Lashein, Removal, preconcentration and determination of trace heavy metal ions in water samples by AAS via chemically modified silica gel N-(1-carboxy-6-hydroxy) benzylidenepropylamine ion exchanger, Desalination, 250 (2010) 62–70.
  14. J. Szpunar, J. Bettmer, M. Robert, H. Chassaigne, K. Cammann, R. Lobinski, O.F.X. Donard, Validation of the determination of copper and zinc in blood plasma and urine by ICP MS with cross-flow and direct injection nebulization, Talanta, 44 (1997) 1389–1396.
  15. G.P. Brandao, R.C. de Campos, E.V.R. de Castro, H.C. De Jesus, Determination of copper, iron and vanadium in petroleum by direct sampling electrothermal atomic absorption spectrometry, Spectrochim. Acta, 62 (2007) 962–969.
  16. E.L. Silva, P.S. Roldan, M.F. Gine, Simultaneous preconcentration of copper, zinc, cadmium, and nickel in water samples by cloud point extraction using 4-(2-pyridylazo)-resorcinol and their determination by inductively coupled plasma optic emission spectrometry, J. Hazard. Mater., 171 (2009) 1133–1138.
  17. Z. Ajtony, N. Szoboszlai, E.K. Susko, P. Mezei, K. Gyorgy, L. Bencs, Direct sample introduction of wines in graphite furnace atomic absorption spectrometry for the simultaneous determination of arsenic, cadmium, copper and lead content, Talanta, 76 (2008) 627–634.
  18. A.D. Mulazimoglu, I.E. Mulazimoglu, E. Ozkan, Preconcentration with 1-nitroso-2-naphthol complexes on Dowex MWC-1 resin: determination of Cu and Zn at trace level in drinking water samples by ICP-AES, E-J. Chem., 6 (2009) 1176–1180.
  19. B.C. Janegitz, L.H. Marcolino-Junior, S.P. Campana-Filho, R.C. Faria, O. Fatibello-Filho, Anodic stripping voltammetric determination of copper(II) using a functionalized carbon nanotubes paste electrode modified with crosslinked chitosan, Sens. Actuators, B, 142 (2009) 260–266.
  20. I.E. Mulazımoglu, A.O. Solak, A novel apigenin modified glassy carbon sensor electrode for the determination of copper ions in soil samples, Anal. Methods, 3 (2011) 2534–2539.
  21. Y. Oztekin, A. Ramanaviciene, A. Ramanavicius, Electrochemical determination of Cu(II) ions by 4-formylphenylboronic acid modified gold electrode, Electroanalysis, 23 (2011) 1645–1653.
  22. W.R. Yang, J.J. Gooding, D.B. Hibbert, Characterisation of gold electrodes modified with self-assembled monolayers of l-cysteine for the adsorptive stripping analysis of copper, J. Electroanal. Chem., 516 (2001) 10–16.
  23. X.C. Fu, J.. Wu, J. Li, C.G. Xie, Y.S. Liu, Y. Zhong, J.H. Liu, Electrochemical determination of trace copper(II) with enhanced sensitivity and selectivity by gold nanoparticle/singlewall carbon nanotube hybrids containing three-dimensional l-cysteine molecular adapters, Sens. Actuators, B, 182 (2013) 382–389.
  24. J. Kuhnau, The flavonoids. A class of semi-essential food components: their role in human nutrition, World Rev. Nutr. Diet., 24 (1976) 117–191.
  25. D. Nematollahi, M. Malakzadeh, Electrochemical oxidation of quercetin in the presence of benzenesulfi nic acids, J. Electroanal. Chem., 547 (2003) 191–195.
  26. D. Nematollahi, R.A. Rahchamani, Electro-oxidation of catechols in the presence of benzenesulfinic acid. Application to electro-organic synthesis of new sulfone derivatives, J. Electroanal. Chem., 520 (2002) 145–149.
  27. M.H. Pournaghi-Azar, H. Nahalparvari, Preparation and characterization of electrochemical and electrocatalytic behavior of a zinc pentacyanonitrosylferrate film-modified glassy carbon electrode, J. Electroanal. Chem., 583 (2005) 307–317.
  28. H.R. Zare, M. Namazian, N. Nasirizadeh, Electrochemical behavior of quercetin: experimental and theoretical studies, J. Electroanal. Chem., 584 (2005) 77–83.
  29. A.K. Timbola, C.D. de Souza, C. Giacomelli, A. Spinelli, Electrochemical oxidation of quercetin in hydro-alcoholic solution, J. Braz. Chem. Soc., 17 (2006) 139–148.
  30. P. Janeiro, A.M. Oliveira-Brett, Solid state electrochemical oxidation mechanisms of morin in aqueous media, Electroanalysis, 17 (2005) 733–738.
  31. E. Brillas, R. Sauleda, J. Casado, Destruction of aromatic contaminants in an Fe/O2 battery, Electrochem, Solid-State Lett., 1 (1998) 168–171.
  32. I.E. Mulazımoglu, Electrochemical determination of copper(II) ions at naringenin-modified glassy carbon electrode: application in lake water sample, Desal. Wat. Treat., 44 (2012) 161–167.
  33. I.E. Mülazımoğlu, A. Demir Mülazımoğlu, E. Yılmaz, Determination of quantitative phenol in tap water samples as electrochemical using 3,3′-diaminobenzidine modified glassy carbon sensor electrode, Desalination, 268 (2011) 227–232.
  34. I.E. Mülazımoğlu, E. Yılmaz, Quantitative determination of phenol in natural decayed leaves using procaine modified carbon paste electrode surface by cyclic voltammetry, Desalination, 256 (2010) 64–69.
  35. S.P. Wong, L.P. Leong, J.H.W. Koh, Antioxidant activities of aqueous extracts of selected plants, Food Chem., 99 (2006) 775–783.
  36. M. Zatloukalova, V. Kren, R. Gazak, M. Kubala, P. Trouillas, J. Ulrichova, J. Vacek, Electrochemical investigation of flavonolignans and study of their interactions with DNA in the presence of Cu(II), Bioelectrochemistry, 82 (2011) 117–124.
  37. V. Ganesh, S.K. Pal, S. Kumar, V. Lakshminarayanan, Selfassembled monolayers (SAMs) of alkoxycyanobiphenyl thiols on gold—a study of electron transfer reaction using cyclic voltammetry and electrochemical impedance spectroscopy, J. Colloid Interface Sci., 296 (2006) 195–203.
  38. G. March, T.D. Nguyen, B. Piro, Modified electrodes used for electrochemical detection of metal ions in environmental analysis, Biosensors, 5 (2015) 241–275.
  39. R. Heidarimoghaddam, S.S. Mortazavi, A. Farmany, New electrochemical sensor for sensitive quantification of copper in river, city, bottled and drinking water samples, J. Water Supply Res. Technol. AQUA, 64 (2015) 749–754.
  40. E. Flores, J. Pizarro, F. Godoy, R. Segura, A. Gómez, N. Agurto, P. Sepúlveda, An electrochemical sensor for the determination of Cu(II) using a modified electrode with ferrocenyl crown ether compound by square wave anodic stripping voltammetry, Sens. Actuators, B, 251 (2017) 433–439.
  41. M.A. Deshmukh, R. Celiesiute, A. Ramanaviciene, M.D. Shirsat, A. Ramanavicius, EDTA_PANI/SWCNTs nanocomposite modified electrode for electrochemical determination of copper (II), lead (II) and mercury (II) ıons, Electrochim. Acta, 259 (2018) 930–938.
  42. M.A. Deshmukh, M. Gicevicius, A. Ramanaviciene, M.D. Shirsat, R. Viter, A. Ramanavicius, Hybrid electrochemical/ electrochromic Cu(II) ion sensor prototype based on PANI/ITOelectrode, Sens. Actuators, B, 248 (2017) 527–535.